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We study bifurcations leading to the appearance of elliptic orbits in the case of four-dimensional symplectic
diffeomorphisms (and Hamiltonian flows with three degrees of freedom) with a homoclinic tangency to a saddle-
focus periodic orbit.
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1. Introduction and main results.

Two-dimensional area-preserving analytical diffeomorphisms with a structurally unstable hetero-
clinic cycle were considered in [1]. Such diffeomorphisms are divided into three classes depending on
the structure of the set of orbits lying entirely in a small neighborhood of the heteroclinic cycle. It was
shown in [1] that diffeomorphisms having infinitely many elliptic islands (in this small neighborhood)
are dense among the diffeomorphisms of the third class.

In the present paper we consider the problem on the existence of elliptic periodic orbits for four-
dimensional symplectic diffeomorphisms (and for three degrees of freedom Hamiltonian flows) with
homoclinic tangencies.

The structurally stable periodic orbits of four-dimensional symplectic diffeomorphisms, or of three
degrees of freedom Hamiltonian flows in a fixed energy level, can be of the three following types [3]:
1) saddle, i.e. such that have one pair of multipliers inside the unit circle and the other pair outside;
among saddle periodic orbits one may distinguish the saddles (the periodic orbits with real multipliers
vy =1, Vg =Y, U3 = 7f1, vy = 751 where |v;| < 1) and the saddle-foci (the periodic orbits with
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complex multipliers vy 9 = et V34 = A let where 0 < A< land 0 < ¢ < );

2) 1-elliptic, i.e. such that have a pair of real multipliers and a pair of multipliers on the unit circle:
vi=7, vra =71 v34=er" where |y| <1land 0 <w < 7 ;

3) 2-elliptic or simply elliptic, i.e. such that have all multipliers on the unit circle: v; o = eii“’l,ygA =
et2 where ) < wi2 < mand wy # wy .

In the symplectic polar coordinates, the map near a 2-elliptic fixed point! can be written in the
following (Birkhoff) normal form if there is no strong resonances (i.e. wi # wa, wi # 2wz, wi # 3wo,
wy # 2wy, wo # 3wy, w1 + wo £ T, w + 2we F£ 2w, 2wy + wy # 27, 3wy £ wo # 2w, 3ws £ wy # 2,
wl,g 75 271’/3,’/T/2 ):

p=p+o(p?), 0=0+w+ Qo+ o0(p)

where p € R2, 0 € T?, w = (w1, w2) and Q is a (2 x 2)-matrix. If  is non-degenerate (i.e. det Q # 0),
then the Kolmogorov-Arnold-Moser theory is applied to this map at small p, which guarantees the
existence of a large (in measure) set of invariant tori near p = 0 (the map must be at least C°
smooth [4]).

Such elliptic point is called generic. Unlike the two-dimensional case, a generic 2-elliptic point
may be unstable in the usual (Lyapunov) sense. However, for the majority of initial conditions near
such point (the initial conditions on the invariant tori) the orbit never escapes the small neighborhood
of the fixed point. Thus, we have here some form of stability.

The question now is how elliptic periodic orbits can appear in chaos for four-dimensional maps.
Note that there cannot be a straightforward analogy with the two-dimensional results. Indeed,
unfolding a homoclinic tangency to a saddle (i.e. when multipliers are real) can not produce 2-elliptic
periodic orbits if the transversality conditions of [5, 15, 6] are satisfied.

These conditions guarantee the existence of a uniform partially hyperbolic structure in a small
neighborhood of the homoclinic tangency, which essentially means the existence of a positive Lyapunov
exponent for every orbit and therefore prevents of appearance of stable periodic orbits.

Another possibility which we explore in this paper is the homoclinic tangency to a saddle-focus.
We will consider maps and flows simultaneously, so 7a system X” will refer to a four-dimensional
symplectic map or a three-degrees of freedom Hamiltonian flow on a fixed level of the Hamiltonian
function H. We will also consider finite-parameter families of such systems. The natural one-parameter
family of the flows under consideration is the family of flows on different levels of the same Hamiltonian.
However, other choices are also allowed (say, we may fix the energy level but consider the Hamiltonians
which depend on parameters, etc.).

Let a C"-smooth (r > 2) system X satisfy the following conditions.

A. Xy has a periodic orbit Ly which is a saddle-focus with the multipliers v1 3 = Age
Aaleiwo , where 0 < A\g < 1.

Obviously, any close system will have a saddle-focus periodic orbit L close to Ly.

B. The stable and unstable invariant manifolds W?* and W*" of Ly have a simplest tangency at the
points of some homoclinic orbit T" .

The condition of the ”simplicity” of the tangency (or the quasi-transversal intersection) reads as
follows. Let EyW denote the tangent space to a manifold W at some point M € W . Let M* be any
point on the homoclinic orbit I' . Then we require
B.1. dim(Ep W N EpWh) =1

for the maps, or
B.1. dim(Epy«We N EppWH) =2

for the flows?; and
B.2. The tangency of W# and W* is quadratic at M ™.

+i —
o y V3,4 =

!The study of a periodic orbit can always be reduced to the study of a fixed point: by taking some power of the map
or by considering the Poincaré map on a cross-section to the flow.

2The dimension increases here because the phase velocity vector of the flow belongs to the tangent of any invariant
manifold.
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In turn, one can give a coordinate formulation of conditions B.1-B.2 . Namely, the quasi-
transversal intersection means that in some local C?-coordinates (z1,x2,%1,%2) near the intersection
point M* (for the flows these coordinates are on a cross-section S, > M*) one has that

W ={y; =0,y2 =0} and W"={zy=0,y; = :1:%} (1)

(for the flows (1) takes place for W* NS, and W* N S, , respectively).

We will consider C"-smooth two-parameter families X, ,. Here, the dependence on p is assumed
to be generic in the sense that the orbit I' of homoclinic tangency bifurcates into two transverse
homoclinic orbits at, say, 4 < 0 whereas at 4 > 0 there is no homoclinic intersections close to T’;
moreover, the distance between W* and W? near any point of I' grows with non-zero velocity as p
grows towards positive values (see (50)). In other words, u can be viewed as a standard splitting
parameter. The parameter ¢ is the argument of the multipliers of the saddle-focus periodic orbit L,
varying near ¢ = @g.

Let U be some sufficiently small neighborhood of LoUI'. It is the union of a small neighborhood Uy
of Ly and a neighborhood U; of I'\Uy. When we consider the flows, Uy is a solid torus and U; is a
handle glued to Up. In the case of maps, Uy is the union of a finite number m of disjoint balls centered
at the points of Ly (where m is the period of Ly = {O1,...,0n}, Oj11 = X00;, O1 = X¢0,,) and Uy
is the union of a finite number of small neighborhoods of those points of I' which do not belong to Uy .

The main problem we study for the family X, concerns the bifurcations of single circuit periodic
orbits in U. The term ”single circuit” refers to those periodic orbits which visit each connected
component of U; = U\Up only once in the case of maps® or those which have only one connected
component in the intersection with Uy in the case of flows.

The main result is given by the following theorem.

Theorem 1. On the parameter plane (i, @) there exists an infinite sequence of regions A; accumulating
at the point (u, ) = (0,90), such that the system X, has a 2-elliptic (generic if r > 5) single circuit
periodic orbit at (u,p) € A;.

The proof of the theorem is based on the reduction of the first return map in a small neighborhood
of a single circuit periodic orbit to some universal form, by means of a linear rescaling of coordinates
and parameters. This gives a kind of ”asymptotic normal form” for the bifurcations of single circuit
orbits, in the same way as it was done in [5, 15] for general dynamical systems with homoclinic
tangencies. For the systems under consideration, such a normal form is a four-dimensional analogue
of Hénon map*

To =21, Z1=Y2, Y2=1Y1,
2 @)
g1 = —x2 + Mi(z1 + y1) + My — y3.

Here M) and M, are, essentially, rescaled parameters x4 and (¢ — ¢g) (see (74)). They are no longer
small and can take arbitrarily finite values. We first study bifurcations in this map and find the regions
in (M, Ms)-plane which correspond to 2-elliptic periodic orbits. Then, returning to the non-rescaled
parameters, we determine the location of the corresponding regions in (u, ¢)-plane.

The significance of the reduction to the asymptotic normal form is, as it follows from Lemma 4 in
Section 5, that any generic dynamics, or any generic codimension-one and codimension-two bifurcations
in the map (2) appear in the unfolding of the homoclinic tangency to a saddle-focus in the four-
dimensional symplectic maps. A list of these bifurcations is given in Section 6.

The paper is organized as follows. In Section 2 some necessary information about symplectic maps
is collected. In Section 3 we consider a four-dimensional symplectic map Tp in a small neighborhood

3Tt is clear that each point of a single circuit periodic orbit is a fixed point for the first return map into the corresponding
connecting component.
Tt preserves the symplectic form 1 A(y1 — Miys) + 22 \ y2.
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of the saddle-focus periodic orbit. We show that such maps can be reduced locally to some special
form by a canonical coordinate transformation of class C"~! (Lemma 1) and that all iterations of Ty,
when brought to this form, are uniformly close to the iterations of the linearized map (Lemmas 2 and
3). In Section 4 the global map T} is considered (i. e. the map by the orbits of X, near the piece
of the homoclinic orbit I' N Uy): by a symplectic rotation of coordinates which preserves the special
form of the local map Ty we bring 77 to some standard form. In Section 5 the first return maps
T, = Tng are studied: an affine transformation of coordinates and parameters makes the first return
map asymptotically (as i — +o00) close to the map (2). In Section 6 the bifurcations of the fixed
points of this Hénon-like map are studied and the main theorem is finally proved.

2. Basic information on symplectic maps

The following definitions are taken mainly from [3] .

Consider an even-dimensional linear space R?™. The symplectic structure in R?" is a nondegenerate
antisymmetric bilinear 2-form: [¢, ] = —[n, &] where &, n € R®®. The space R?" endowed by the
symplectic structure [,] is called symplectic linear space. A linear transformation £ : R2" — R?" is
symplectic, if it preserves the form [,], i. e. [LE, Ln] = [, n).

Let aq, ..., ay, B1, ..., By be the symplectic basis, i. e. an orthonormal basis which satisfies

(i, Bi] = —[Bi, ai] =1,
[, ;] = 0 and [B;, Bj] = 0 for any and 7,

The corresponding coordinate frame is called symplectic. In symplectic coordinates the form [£, 7]

takes the standard form
Enl=a Ny=o1 Nyi+-. + 20 \tn

where £ = (21, ..., Tny Y1, -, Yn)s 1= (@, -0y Ty Y1y -+ 5 Yy), and 35 \y; = 2515 — 2hy;.
In the symplectic basis, a linear symplectic map £ : (z, y) — (T, §) is defined by a symplectic
matriz A : (Z, y) = A(z, y), i. e. by a matrix which satisfies

ATJA=T (3)
where A" is the transpose to A, 01
=(10)

and I is the (n x n) identity matrix.
Recall some properties of symplectic matrices.

Property 1 [3]

The coefficients of the characteristic polynomial p(A) = det(A — AI) of a symplectic map are
symmetric: if
p(A) = apA?" + a N L+ ag,,
then
ap = QA2npy - -+ 5y Qg = A2p—gy =+« -

Thus, if v is an eigenvalue of a symplectic matrix, then v~!

lar det A = 1.
Obviously, this property holds for any linear symplectic map, independently of the basis in which
it is written down.

is also an eigenvalue. In particu-
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Property 2

If A is a symplectic matrix, then AT and A~! are also symplectic.
This is an easy consequence of the characteristic Property (3). Indeed, since J2 = —I5,, (where I,
is the (2n x 2n) identity matrix), we have

ATJA=J = ATJ=JA" = JATJ=-A"" =
= AJA'J=—-1L, = AJA" =J

and the symplecticity of AT follows. Analogously, for the matrix A~ we have
ATJA=J = JA=AYHTT = J=AYHTJa .

Let us now write a symplectic matrix A as

where a, b, ¢ and d are (n x n)-matrices.

Property 3

1. The inverse to A is given by the following formula:

Al ( d. ﬂ) | (5)

—C a

2. The matrices a, b, ¢ and d satisfy the following relations:

Da'c=c'a,

2)b'd=d'b, (6)
3)da—bTe=1

and
)ab" =ba’,

2) cd" =dc', (7)
3)da’ —cb" =1.
3. For any symmetric (n x n)-matrix u (i. e. u| = u), the matrices
(¢ + du)(a + bu)™", (au+ b)(cu +d)~", (b4 ud)~ (a + uc), (ub + d) ™ (ua + ¢)

and the inverse to them are symmetric.

Formula (6) follows directly from (3) when the matrix A is written in the block form (4);
formula (7) is simply the relation (6) for the matrix AT. Formula (5) is verified by direct multiplication,
with taking identities (6) into account. To prove Property 3.3, note that since w is symmetric,

i. e. v = u, the matrices (i ?) and (é ?) satisfy (6) and, hence, they are symplectic. The

product of symplectic matrices is symplectic by definition, therefore the matrices
a b\ (I 0\ _ fa+bu b
c d w I) \c+du d
a b\ (I uw\_ (a au+b
c d 0 I)] \c¢ cu+d
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are symplectic too. Thus, they must satisfy the identities (6) which read here, respectively,
as (a+bu) " -(c+du) = (c+du)"-(a+bu) and (cu+d) " -(au+b) = (au+b) " -(cu+d), but this just means
that the matrices, respectively, (a +bu)(c+du) ! (and (c+du)(a+bu) ! also) and (au+b)(cu+d) !
are symmetric indeed. Analogously, multiplying the matrices (i ?) and (é 1;) on (Z Z) from
the left, one gets that (b + ud)~!(a + uc) and (ub+ d)~!(ua + c) are symmetric as well.

Given a symplectic structure, a diffeomorphism in R?" is called symplectic if its derivative (at any
point) preserves the symplectic form. More generally, symplectic maps on even-dimensional manifolds
may be considered where the symplectic form is a differential bilinear antisymmetric form defined
on the tangent space. The coefficients of the form may now depend on the point on the manifold.
However, the study of the systems we consider in this paper is reduced to the study of symplectic
maps in a small neighborhood of a single point. Thus, by virtue of Darboux theorem, we can assume
from very beginning that we deal with the standard symplectic structure.

In this case, the Jacobi matrix of the symplectic map satisfies (3) at any point. By definition,
symplectic diffeomorphisms form a group (i. e. the product of symplectic maps is symplectic and
the inverse to a symplectic map is symplectic either). Thus, dealing with symplectic maps we may
freely make symplectic coordinate transformations without loosing the structure. Of course, after
an arbitrary coordinate transformation, a symplectic diffeomorphism remains symplectic but the
symplectic form may change. Therefore, when making non-symplectic coordinate transformations
we will always trace out the changes in the symplectic form.

2.1. Symplectic map near a saddle periodic orbit.
Straightening of invariant manifolds

Let a C"-smooth symplectic diffeomorphism X have a periodic orbit. Let O be a point of this
orbit, so X™O = O for some m > 1. One may always assume that O is in the origin. Let U be a
sufficiently small neighborhood of O. Consider a local map To = X™ 7.

We will also consider C"-smooth flows on a fixed energy level of a Hamiltonian system. If L is
a periodic orbit of such system, then the Poincaré map of a small cross-section to L is symplectic.
Let O be the point of intersection of L with the cross-section and U be a small neighborhood of O on
the cross-section. Then the local map T is just the Poincaré map defined in U.

Let the periodic orbit under consideration be saddle, i. e. we assume that its multipliers (the
eigenvalues of the derivative of Ty at O) do not lie on the unit circle. By Property 1, exactly n
multipliers lie inside the unit circle and n lie outside. One may choose a symplectic basis in such a
way that in the corresponding symplectic coordinates (z, y), where 2 € R™, y € R™, the spaces y = 0
and x = 0 will be the eigenspaces of the derivative of T at O, corresponding to the multipliers inside
and outside the unit circle, respectively.

In this basis the map Tp is written as®

(8)

where the spectrum of B lies strictly inside the unit circle, and the functions F' and G vanish at the
origin along with their first derivatives.

The fixed point in the origin has local stable and unstable manifolds W}’ and W  which are
written as y = hg(z) and = = h,(y) respectively, where hs and h, are C"-smooth functions such that

Oh
ox

Ohy,
dy

hs(0) = 0, 0)=0,  he(0)=0, 0) =0.

5We use the notation B~ for the inverse to the matrix B transposed.
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It is well-known that Wy} = and W3 are Lagrange manifolds; when we deal with the standard symplectic
form this just means that hgs and h, are gradients of some smooth functions in R". Equivalently, the
derivatives of hg and h, are symmetric matrices:

Ohs _ ((0hs\ ' )
oz Oz
and
-
y dy )
Recall the proof of (10). The invariance of W% means that if x = h,(y), then T = h,(7), i. e.
hu() = Bhu(y) + F(hu(y), y) (11)
where

7=DB""y+G(hu(y), y).

The functional equation (11) is solved by the successive approximation method, i. e. h,, is found as a
limit (in C"-topology) of the sequence of functions h,(z) defined inductively as

where
y=B y+Gh(y), y).
Correspondingly, the derivative h!,(y) is the limit of the sequence uy, (y):

-1
_ 0T 0T Jy Jy
wnia@ = (Gt + 52) (SLunt) + ), o =o0.

The matrix ug is clearly symmetric. Therefore, in order to prove (10), it is sufficient to check that
once U, is a symmetric matrix, u,41 is symmetric too, but this follows from the symplecticity of the
map (z, y) — (T, y), see Property 3.3.

In fact, one may further assume that

hs =0 and h, =0,

i. e. that the local stable and unstable manifolds are straightened. Indeed, condition (10) guarantees
that the following coordinate transformation

§=z—hu(y), n=y

!

is symplectic (because it follows from (10) that the derivative (é _h}f(y)> satisfies (6)). Obviously,

it is a C"-transformation and the local unstable manifold is now given by equation & = 0. Analogously,
a symplectic coordinate transformation straightens the local stable manifold.
After straightening the invariant manifolds, the local map T} is written in the following form

T =Bz + f(z, y)z,

o (12)
y=B Ty+g(z, y)y

where f and g are C"~'-functions such that

f(0,0) =0, g(0,0) =0.

REGULAR AND CHAOTIC DYNAMICS,V.3, N 4, 1998 9
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By (6), the symplecticity of Ty is equivalent to the following relation between f and g:
B l'f+g ' B+g' f=—(99)"(B+[)=(B ' +g")fax+ (fyz) 92y — (9y9) for,  (13)
plus the matrices
(B~ +(g9n)" +9")fyr and (BT + [ f + (for) )guy (14)

must be symmetric.

3. Four-dimensional symplectic map near a saddle-focus fixed point

Now let the saddle periodic orbit of X be a saddle-focus, i. e. we assume that the multipliers
are Ae™ and A"le*™ where 0 < A < 1, 0 < ¢ < 7. In this case the matrix B in formula (12) for the
local map Tj is

B =2\ <C9S‘P _Sm“o> ; (15)
sin ¢ COS

the variables z and y are now two-dimensional: z = (z1, z2) and y = (y1, y2).

Lemma 1. There exists a local symplectic C"~'-transformation of coordinates (preserving the
form (12) of the map Ty) after which the functions f and g satisfy the following identities:

(16)

REMARK 1.
1) The lemma is valid at r > 2. When r > 3 the lemma allows one to represent the map T} as

z=Bz+O(lzlyl), =B "y+OylPllz])- (17)

2) By “the standard method” (using the generating functions) one may prove the existence of
C"2_coordinates desired. We use here a “direct” method: the change is represented in the explicit
form and then its symplecticity is proven.

Proof.
Let us make the local transformation

Tnew = (I + 1/)(?/))1'7 Ynew = \Ij(y) (18)

where ¢(0) = 0, ¥(0) = 0. By Property 3.1, this transformation is symplectic if and only if

V(y) =T+ (y) " (19)

and the matrix

—~(I+9(y) "Y' (y)z (20)

is symmetric for any 2 and y. The function ¥ is found from (19) as

1
W(y) = / (1447 (sy) Ly ds.
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BLLIFTIC PERIODIG ORDBITS @

One can check that if the matrix (20) is symmetric for any vector z, then such defined ¥ is a smooth

. . 92U 0’
function indeed (i. e. = .
( 0y10y2 Oy Oys

Let us choose the function 1% such that

() = Bp(y)[B+ £(0, y)] ™" = f(0, y)[B+ £(0,y)] " (21)

where we denote

7=[B " +g(0,y)ly. (22)

To show the existence of a C"~'-smooth function 1 which yields a solution of the functional
equation (21), note that v satisfies this equation if and only if z = t(y) is an invariant manifold of
the following map:

Bz[B + f(0, y)]~" = (0, y)[B + f(0, »)] ",
=[BT +g(0, )y

z

(23)

where z € R2*2. The point (y = 0, z = 0) is the fixed point for this map. The linearized map at this
point is

z+ BzB7! — (0, 0)yB~!,

24
yr—>B_Ty. (24)

The linearized map is in the block-triangular form. The eigenvalues which correspond to variables y
are the eigenvalues of B~ and they lie outside the unit circle. The other eigenvalues of (24) lie on the
unit circle (because, for any square matrices Cy and Cy, the eigenvalues of the operator z — C;2C5
are the pairwise products of the eigenvalues of C; and Cb; see, for example, [8]; in our case this
rule gives 11,9 = 1, v34 = €2 see (15)). Such separation of the spectrum of the multipliers of
the zero fixed point of the map (23) implies (see more details in [9]) that this map has a unique
smooth invariant strong unstable manifold of the kind z = v (y) where (0) = 0. Thus, the function 1)
satisfying (21) exists indeed. The smoothness of the strong unstable manifold equals to the smoothness
of the corresponding map; since the right-hand side of (23) involves a C"~!-function f, it follows
that ¢ € C7 L.

To ensure that such taken function 1 defines a smooth symplectic transformation of coordinates
by formulas (18), (19), we must verify that the matrix (20) is symmetric. To this aim, note that
like an unstable invariant manifold (see Section 2.1), the strong unstable invariant manifold is found
as a limit of successive approximations. Thus, the function % in (21) is a limit of the sequence of
functions 1), defined inductively by the following rule

bu+1(5) = Ba()[B+ (0, 9)] ' = fO, )[B+ (0, 9] ", 4o=0, (25)
where 7 and y are related by (22). Hence, if we denote the matrix (20) as u(z,y) = —(I +
Y(y)) "' (y)z, then u(z,y) will be the limit of the sequence u,, (z, y):
mia@9) = (Lt + Z) (A) 7, =0 (26)
where
T=(B+f0,y)z, F=(B"+g0,y)y. (27)

5More precisely, it is a (2 x 2)-matrix whose entries are scalar functions of y.
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Note that the map (27) is symplectic, the validity of (6) follows from the symplecticity of the
original map (12), see (13), (14). Therefore, by Property 3.3, if u,, is a symmetric matrix, then wu, 1
is symmetric too. Hence, the limit matrix (20) is symmetric and the formulas (18), (19) define a
C"~!-smooth symplectic coordinate transformation indeed.

Now note that the functional equation on 1 is designed in such a way that in the new coordina-
tes (18) the map Tj remains in the form (12) with some new functions f and g, and

oz
ox =0

B, (28)

i. e. the new function f satisfies f(0, y) = 0. It follows immediately from (13) that ¢(0, y) =0, i. e.
in the new coordinates the first two identities of (16) are fulfilled.
Absolutely analogously, one can construct a C"~'-smooth symplectic coordinate transformation

Tnew = (7)), Ynew = (I +¢(z))y with @(0)=0, @(0)=1, ¢(0)=0, (29)

such that the other two identities of (16) become valid (the first two identities cannot be destroyed by
such transformation). [ |

If the map under consideration depends on some parameters, continuously or smoothly, then
the coordinate transformation we obtained in Lemma 1 depends on the parameters, respectively,
continuously or smoothly too. It must however be noted that in the case of smooth parameter
dependence the one last (r — 1)-th derivative with respect to the parameter may not exist for the
functions ¥ and ¢ defining the transformation. This follows just from construction, because the
strong unstable and strong stable manifolds which we used in deriving our transformation depend on
the parameters in the same manner; see [9] for more detail.

Moreover, we never used in the proof that the eigenvalues of B are complex. Obviously, the
lemma remains valid in case B is a matrix, of an arbitrary dimension, whose all eigenvalues have the
same absolute value — this condition is necessary and sufficient for the operator z — BzB~! to have
all eigenvalues on the unit circle, which is crucial for the existence of the required strong unstable or
strong stable manifolds.

The coordinates of Lemma 1 are quite convenient because if the identities (16) are fulfilled, all
the iterations of the local map Ty are uniformly close to the iterations of the linearized map. Namely,
denote (zk, yr) = Ty (zo, yo)- It is well-known [10, 11, 12] that for sufficiently small §, given any & > 0
and “the boundary data” zg, y such that ||zo|| < 6, |yx]| < J, the corresponding orbit (z;, yj)fzo
of Ty is defined uniquely and lies in the small neighborhood Uy of the fixed point O(0, 0) entirely.

Applying Lemma 3.6 of [9] to the map under consideration gives the following result:

Lemma 2. When identities (16) hold, the following relations are fulfilled:

T = Bk$0 + AkPk@Oa yk) )

(30)
yo = (B yr, + Nax(zo, yk)

where py, and q;, are C"~'-functions which tend to zero along with all derivatives as k — +o00; here A €
(0, 1) is the absolute value of the eigenvalues of B, see (15).

Analogously to [13], these formulas may be enhanced as follows.
Lemma 3. Ifr > 3 in Lemma 2, then
o, = B g + kA Py (w0, yr)wo,

(31)
yo = (B")*yp + kX Qr (20, yi)yk
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where Py and Qy are uniformly bounded along with all derivatives up to the order (r — 2).

The proof of this lemma repeats closely the proof of an analogous statement (Lemma 1.2 in [13]).
Therefore, we prove here the boundedness only for the functions Py, and @y themselves; the boundedness
of derivatives is verified along the same lines (for more detail see [13]).

We will use the method of the boundary-value problem [10, 11]. Consider the following operator 7

) j=1
&'\] = BJZE() + Z[] BJ?S?IF(‘T"S’ ys)a
§—=

= Ok — 5 011G, ), 2
J=0 1,k
where we denote C' = B~ "; here, F and G are the functions from (8) which are estimated as
IF < KlzlPllyll, NG < K2yl (33)

according to (17). The operator 7 : [(z;, yj)]g?:[] = [(Z5, 37]')]?:0 is defined on the set of sequences

R(8) = {z = [(xj, yp)lj—o. llz;ll <3, ly;ll < 8}

with the norm ||z|| = max||(z;, y;||. Note that if [(z;, yj)];’?zo is a fixed point of T, then
J

T T Tt
(:EUa yO) _0> (]717 yl) _0> s —0> ($k7 yk)7

i. e. the fixed point of T is the orbit of the map Tj.

For sufficiently small dy the operator 7 maps the set R(dp) into itself and is contracting on this
set (see a proof in [12]). Thus, the map (32) has a unique fixed point which is the limit of iterations
by T of any initial sequence in R(dy). Therefore, to get some estimates on the orbit of the map Tj it
is sufficient to show that the set of sequences [(z;, yj)]fzo satisfying these estimates lies within R(d)
and is invariant with respect to 7.

As such an invariant set, let us take Ry, C R(dp) for which z;, y; satisfy the following inequalities
(given xg and yi):

lzj = Blao|| < 00jNT*, ly; — G Fyill < do(k — AP (34)
Note that these inequalities imply that for some constant K, independent of dp,
511 < KodoAF, ly;ll < KodpA*7. (35)

Plugging (35), along with (33), in (32) we see that for dp sufficiently small, if z € R, , then

j—1
12 — Bl < KZIIBIIJ sl llysll < KKGog Y X7 IATNES =

s=0

KK3

= ( X 050> S N T < G NI HE,
. k-1 . k—1 .
llyj — C7 || < KZ ICHIPH T |l s I < KK(dg Z XTI s \209) =
s=7j s=j

= (KKJAG3) 0o(k — )N < 5g(k — j)N* .

This means that Z € Ry, . Thus, T (Ryoy,) C Ragy,-
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So, we have proved that given zy and y;, the corresponding orbit [(z;, ?/j)]?:o of Tj is an element
of Ry, (as this orbit is the fixed point of 7). By construction (compare (34) with (31)), this means
that the functions Py and Qj (31) are uniformly bounded indeed. We skip the proof of boundedness
of their derivatives.

When the map Ty depends smoothly on some parameters, the matrix B and the functions pg, g
and Py, Qk in Lemmas 2 and 3 are also parameter dependent. The derivatives of these functions with
respect to the parameters are estimated as follows (see Lemma B.1 in [9] and Lemma 1.2 in [13]):
the derivatives including s differentiations with respect to the parameters (s = 1,...,r —2) are of
order o(k~*%) for functions px, qx and O(k™*) for Py, Q.

4. Global map 77 near the orbit of homoclinic tangency

Now assume that the system X under consideration (a symplectic map or a Hamiltonian flow
on the fixed energy level) has a homoclinic orbit I'; at the points of which the stable and unstable
manifolds of the saddle-focus periodic orbit are tangent. Moreover, we consider the case of the simplest
tangency, i. e. such that satisfies conditions B.1, B.2 (see Section 1). Take a pair of points of T" in Up: a
point Mt (zT, 0) € W (O) and apoint M~ (0, y~) € W (O)7, where ™ = (21, 23), y~ = (1, ¥ );
obviously (a)? + (a5 )2 # 0, (y7)? + (45 )? # 0.

All the forward iterations of Mt by Tj stay in Uy on W, and tend to O; all the backward
iterations of M~ by Ty stay in Uy on W and tend to O as well Moreover, by
construction, X*(M~) = M™ for some positive ¢ (where X’ denotes the time ¢ shift by the orbits
of X if X is a flow and it denotes the ¢-th power of X if it is a map).

Let IIT and II~ be sufficiently small neighborhoods of, respectively, M+ and M~ in Uy. The
map 717 : II- — II" by the orbits of X close to the segment of I" between M~ and M is called the
global map; when X is a map we just have T} = X!|;-. If we denote the coordinates in II* and II~
as (20, ¥°) = (w01, Z02, Yo1, Yo2) and (z', y') = (z11, Z12, Y11, y12) respectively, then the global map
is written as

7zt =azxt +b(y' —y7) +..., P =czt +dy' —y ) +..., (36)

where the dots stand for the second and higher order terms; a, b, ¢ and d are some (2 x 2)-matrices.
Altogether, they comprise a symplectic (4 x 4)-matrix

a b
s=(0a)

hence they satisfy Property 3.2 from Section 2.
Note that the rotation in U

Tnew = Ra® , Ynew = Ray (37)
with

sin o Ccos «

Ra _ <COSO( —Slna) (38)

is a symplectic transformation of coordinates. Moreover, it does not change the matrix B, neither
it destroys identities (16), nor affects formulas (30), (31). Therefore, we are free to make the local
rotation (37) with an arbitrary angle @ and we will choose it so that to nullify as many entries of S
as possible. The particular effect of such rotation on the block d of S is

dnew = R_adRa . (39)

"Recall that we have straightened the local invariant manifolds, so the equations of Wi.(O) and W.(O) in Uy
are y1 = y2 = 0 and z1 = z2 = 0 respectively.
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By assumption, T7(W},) is tangent to W;_  at M*(z*, 0) along a single vector. Thus, if we
consider the linearization of the map 17 at M ~:

7 -zt =azt +b(y' —y7), 7 =ca! +d(y' —y), (40)

the image of the plane {z! = 0} by this linearized map intersects the plane {y° = 0} along a straight
line. In other words, the equation

0=d(y' —y") (41)
has a one-parameter family of solutions. Thus,

detd =0 and rankd=1. (42)

di1 dio
d =
<d21 d22>

are linearly dependent, but not all entries are zero. Now one can choose « in (39) such that the

matrix d takes the form
< )
d21 d22

where d3, + d3, # 0. Let us assume, for definiteness, that dos # 0.

If this is not the case (i. e. if dog = 0 but dy; # 0), then one may take a new pair of homoclinic
points (T5 'M~, M*) instead of (M~, M*). The new map Ty will be T] = TiTj and, taking into
account that the function g in the formula (12) for Ty is identically zero on W} (see (16)), one can
see that the corresponding matrix d will be

J =\ 0 0\ fcosep —singp ! 0 0
dyy O sin @ COS do1cosp —dopsing )’

Since sing # 0 (by assumption ¢ # 0, 7), it follows that now db, = —da; sing # 0.
Summarizing, we may assume that the Jacobi matrix S for the global map 77 at M~ has the
following form:

This means that the rows of the matrix

a1 a2 b big
a2 azx by b

S - C11 C12 0 0 (43)
Co1  Co2 dop dao

where dyg # 0. Since S is a symplectic matrix, it must satisfy relations (6) and (7), e. g.

a) bardag — boada =0,

b) c11(bi2dar — bi1daz) = dag , (44)
¢) c12(biadar — bi1da2) = —da1
d) ag1da; — borcar = 1+ birer .
Since dgo # 0, we have from (44.b)
ci1 #0, biidoy — biada # 0. (45)
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Taking into account quadratic terms in the equation for 7,; we can now write the map 7 in the
following form

Tor — ] = anzi + a1ozi2 + b (ynn — vy ) +bi2(yiz —ys ) + ..,

Toz — Ty = anz11 + anz12 + ba(yin —y; ) + boa(yiz —ys ) +...

Yor = cuizin + crz12 + D1y — 97 )® + Doy — y1 ) (w12 —ya ) + Ds(yrz —y3 )2 + ..., (46)
Yoo = c21211 + 2712 + do1(y11 — Yy ) +do2(y12 —yy ) + ... .
Since 11 = x12 = 0 on W}, its image T1 W}, is given as follows (we used relations (44), (45)):
$02—$;:%y02+---, (47)
Yo1 = 51(3301 —z7)? + 52(51301 — 2 )yo2 + 53?/%2 +...
for some coefficients lN)j. Condition B.2 requires the quadratic tangency of this surface

to W; . : yo1 = yo2 = 0, which is obviously equivalent to the non-vanishing of the coefficient D.

One can compute that
d oy \’
Dy —D ﬂ) +D (£>
~ ! 2 <d22  \dao

D, = p
(b1 — blzd_zl)Q
22

Thus, condition B.2 reads as
Dy = Dyd3y — Dodyiday + D3d3; #0. (48)

We can always assume that Dy > 0 (the sign of Dy may be changed by changing the sign of all
variables: (z, y) = (—z, —y)).

Let us now include our system into a smooth one-parameter family X,. After transition to the
coordinates of Lemma 1 the system is C”~!-smooth with respect to phase variables (z, ) and C™ 2-
smooth with respect to p (more precisely, the first derivative with respect to (z, y) is C"~2 with
respect to p).

At non-zero values of the parameter p the global map T; is written as

Tor — 27 (1) = a1 ()21 + arz2(p)z1z + b () (yir — vy ) + bia(p) (yi2 —y5 ) + ...
To2 — x5 (1) = a21 (1)@ 11 + ag2(p) @12 + bor (1) (y11 — yy ) + baz () (y12 —y3) + ..
Tor = y1 (1) +cr1(p)wr + crz(p)zi2 + din(p)(y11 — vy ) + di2(p) (Y12 — o) (49)

+Di(y1n —y7)? + Dalynn — yi) iz — v5) + Ds(yi2 —y3)> + ...,
Too = Y5 (1) + ca1(p) w11 + coz(p)z12 + dot (1) (Y11 — yy ) + doa () (Y12 — 4y ) + -+ -

where the constant terms and coefficients of the linearized map are now C”~2-functions of i, the same
concerns higher order terms denoted by ellipsis. Recall that at g = 0 we have that identities (44) are
satisfied and

y1(0) =y3(0) =0 and dy1(0) = d12(0) = 0.

We assume that the dependence on p is generic, in the sense that for y from one side of zero,
say, for > 0, the homoclinic intersection of T1 W% with W} = disappears and, moreover, the distance
between these manifolds changes with non-zero velocity as p varies. One can see that this is equivalent
to requirement

Wil Sy, (50)
ow =0
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Without loss of generality we will put

yi(p) = p (51)

in (49).

Let us now enlarge X, to a two-parameter family X, for which the argument ¢ of the multipliers
of the saddle-focus periodic orbit under consideration is taken as an independent parameter. In this
case all functions of y in (49) (except for y}(u) = p) are also C"2-functions of ¢.

5. Reduction of the first return map to Hénon-like form

A single-circuit periodic orbit of X, corresponds to a fixed point of the first return map T; = TITg
for some ¢ sufficiently large. The study of the first return maps is conducted here in the same way as
it is done for the case of general systems with homoclinic tangencies [14, 5, 15]. The domain U? of the
map 7T; consists of those points in a small neighborhood IT* of the homoclinic point M (2™, 0) whose i-
th iteration by the local map T} lies in a small neighborhood II~ of the homoclinic point M~ (0, y~).
The domain is non-empty for large i: Lemma 2 describes o) as a thin strip composed of points (2, 3°)
such that ||2° — 27| < ¢ for a sufficiently small & and

yO — (BT)iyl + Aiqz'(l'o, yl) (52)

where y! ranges in |ly! —y || < e. Tt is seen from (52) and (15) that the strips o) wind around
the two-dimensional area II" N W} ., approaching it as i — +oco (Fig. 1). Again by Lemma 2, the
images Téa? in IT~ are the strips o} winding onto IT~ N Wi, asi— +oo. In greater detail, the general
structure of the set of strips 0?’1 is described in [15] or [9].

Fig. 1

Given i fixed, it is convenient to use (z°, ') as the coordinates on the strip U? where y! is related
to (2%, ¢°) by (52). This change of coordinates is not symplectic. The symplectic form dz® A dy®
which is preserved by the map T}, is written in the new coordinates as

dz® \((BT)"+ Ny (2, y"))dy" + Ngj, (z°, y")da?),
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see (52). Since the form is defined up to a scalar factor, we can divide to A’ in this expression. Now,
by (15) and since ¢; — 0 as i — 400, we find that the map 7T; in the new coordinates preserves the
form

dz® \R_ipdy' + ... (53)
where the dots stand for terms vanishing as ¢ — 400, and R, denotes the rotation to the angle «
(see (38)).

Lemma 4. There exist infinitely many strips O'? for each of which the map T; may be brought, by an
affine transformation of coordinates and parameters (u, ) — (My, Ms), to the map asymptotically

close (as i — +00) to the four-dimensional Hénon-like map
T =1, 1 =1Y2, Y2 = Y1,
; e (54)
g1 = Mi(y1 +21) — 22 —y5 + My

Moreover, for any region D C R? containing (0, 0) there is ig > 0 such that the range of (My, M>)
covers D for i > ig. The same is true for the range of new coordinates (z1, T2, Y1, Y2).

Proof.
By (30), (15), (49) and (52) the map T; : (2°, y') — (°, ') is written as

(501 - ﬂUf) _ i (011 G12> ($01 COS ip — To2 sinigo) n <b11 b12> (yn - yf) n
T2 — Ty a1 az) \To1Sinip + Tg2 COS 1Y bat b2 ) \y12 —yo ’
i [ Yrncosip+Ygsinip \ _ ([ ci1 c12\ o1 cosip — Lo sinip dii di2
xi [ Vncosiotupsinig ) (4 051 e . (55)
—1q1 Sinip + Yqy COS 4 Y5 Co1 €29 o1 SIN %P + Tpg COS 1 do1  dog
‘ <y11 —y1> n <D1(y11 —y1)? + D2y =y )(y12 — 5 ) + Ds(yr2 — y2)2> 4
Y12 — Yg ... ’

where the dots stand for o(\?) terms (the terms A'p; and Ag; from (30); recall that A < 1, so X! is
small as ¢ — +o00) and for the quadratic and higher order terms (other than those written down);
the terms xj and y3, the coefficients aji, bjk, cji, djr, and the terms denoted by the dots depend
C"2-smoothly on w1 and . Recall that the coefficients d;; and dj2 are of order p, as well as 5.

We will shift the origin and also rotate the coordinate frame in order to make the free terms in
the equation for T and in the second equation for 3 zero; moreover, the coefficients dy; and dio must
also vanish after this coordinate transformation. Precisely, we introduce new coordinates (£, n):

f1> <!L“01 — ] — ff) (m) <y11 Y - 771‘)
~ R, , — R L 56
<€2 “ \wop — 23 — & 72 C\yi2 -y, — (56)
for some small (of order O(|u|+ \?)) quantities £§, &5, %, n5 and o such that the map (55) recasts as
<§1> _ (011 G12> (51 cosip — &2 Sini‘ﬂ) n (bn b12> (771> n
52 a21 Q92 51 Sin’i(p + fz COs i(p 621 b22 2 B
\i < 771 cos i + 7, sin i ) _ <,g> Y <cn 012> (51 cos i — &a sinigo) + (57)

—7)1 sin i + 75 COs i co1 c22) \&1sinip + €2 cos iy

0 0 Din?+D D3n?
I ( ) (m) 4 ( 1ny + Daming + 3772> +o.
do1 doo) \mo2

where the right-hand sides of the equation for ¢ and of the second equation for 7 vanishes
at (£ =0, n =0); the free term in the first equation for 7 is

=+ )\i{xf(cn cos iy + crosiniy) + x;(clz cosip — c11 8inip) —

o o : (58)
— Yy cosip —y, sinip}t +of|u| + A").
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The dots in (57) stand for linear terms of order o(A\*)® and for quadratic and higher order terms. The
conditions of vanishing of the three free terms and two coefficients of the matrix d constitute a system
of equations on &§, £, 0¥, 75 and o*. The solvability of this system at small 4 and A’ is guaranteed
by condition Dy # 0 (see (48)?); we leave details to the reader.

The matrix Z d depends on pu, ¢ and, now, on ¢. By construction, this matrix is obtained by

the linearization of the global map T} at the point
(' = Bi(at + &)+ Npi(a® + &y~ +0%),y' =y + 1)

plus the rotation of the type (37) on the angle *. Thus, this matrix is symplectic and the identities (44)
are satisfied now for non-zero p and any large 3.

Note also that the transition to the coordinates (£, n) by formula (56) does not change the
structure of the symplectic form (53). Thus, in the new coordinates the map T; preserves the form

d¢ \ R—ipdn + 0(1)i 00 - (59)
Now make the following linear transformation of coordinates:

up =&, ug = &2,

- . . (60)
v = doim + doana + X'y, vg = —n sinip + N2 cos iy

where ¢j;, denotes the corresponding entry of the matrix ¢ = c¢- R;,. We will also use further the

notation a = a - R, b=b- Riyp, d=d- Ri,. Note that the matrix S = (a~ 3) is symplectic (it
c

satisfies (6)); moreover, it has the same structure as the matrix S in (43) — the first row of d is zero.
Therefore, S must satisfy identities of kind (44); in particular,

Ga1dor — ba1Cor = 1+ by1 21 - (61)
The Jacobian of the transformation (60) equals to
(721 = dyy cosip + dagsiniyp.

Given %, this quantity is non-zero for all ¢ except for a number of special values. Fortunately, these
exceptional values do not belong to the region we are interested in, as we will show below.
The inverse transformation to (60) is

§1=u1, §2 = uo2,
<771> _ 1 (cos ip —d22> <U1> _ )\iEQ_l <c0s igo) " (62)
Mo 6721 siniep  do V9 &“21 sin iy L

The symplectic form (59) is written in the new coordinates as

duq /\(dU1 — JQQdUQ) + CTQQd’U,Q /\ dvy + O(I)i—H—oo . (63)

8If the original map was at least C*, these terms are of order O(i\*), see Lemma 3.
9This is the formal expression for the requirement that the tangency of Ty Wi, with W, at u = 0 is quadratic.
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The map (57) recasts as follows (we use the first identity of (44)):

_ e bue _ ~

= )\Z( [au — % up + CleUZ) + %(buvl + bg’Ug) + ... s
21 21

_ e bne - b

Uy = N( [am — 2121y Ggoug) + =ty e (64)
21 21

i ~ - .o -
(,1\,)\—(51 — d2252) =u+ )\Z(Cuul + ClQUQ) + Dov% + ...,
21

)\iEQ =+ Ai522u2 +....

Here by = byade; — by1dse, it is non-zero by virtue of (45); the non-zero quantity Dy is defined by (48);
the dots stand for linear terms of order o(\?) (of order O(iA?*) if r > 4) and irrelevant quadratic and
higher order terms.

Let us now rescale the coordinates:

v = —y A vy = —yo A2
Dyd Dodn (65)
Uy = —xlAQi%E—O, U9 = —5132)\31.%,{),—0 .
Dyda1 doy Dydzy day
Using identities (44.b), (44.c), (61) one can see that (64) is now transformed to
T =Y2+ ...,
To=(1+0B1)z1+ Py + .-+,
_ (66)
Yo=Y +...,
Yy = Ml(l)ﬂil + M1(2)y1 —x9+ My — y% cee
whereas the symplectic form (63) is rewritten as
dry \(dyr — MP dys) + ds \dys + ... . (67)
In these formulas, the dots stand for the terms vanishing as 7+ — +o0; the coefficients 3; are
bii byt
P = %dm, B2 = %dm; (68)
0 0
the quantities Ml(l), M1(2), M1(3) coincide in the main order'?:
M) = X4 (das + 0(1)is00) (69)
finally,
My = —X\~*d3, Doji.. (70)

We shall consider the map (66) for the values of ¢ and u corresponding to bounded Mg and M1(3).
So, u tends to zero as i — +oo. Moreover, J22 = dyy cosip — doy sinip must tend to zero either.
Note that while ¢ varies in some small interval near g, the value of ¢ runs a large interval at ¢
sufficiently large. Therefore, for all large ¢ there are values of ¢ close to g, corresponding to doo as

9The o(1) components appear here as the result of rescaling of linear terms of order o(\') denoted by dots in (64); if
the original map was at least C*, one may replace o(1) by O(iA}).

20 REGULAR AND CHAOTIC DYNAMICS,V.3, N 4, 1998



BLLIFTIC PERIODIG ORDBITS @

small as necessary. Note here that when 6722 is small, the value of 6721 = da1 cos i + day sinip is of
order \/d3, + d3,; i. e. the determinant of the coordinate transformation (60) is bounded away from
zero indeed, as required.

Since the map (66) preserves the symplectic form (67), it follows immediately that when M1(3) is
bounded, the differences between the coefficients Ml(l), MI(Z) and M1(3) must tend to zero as 1 — +o0.
Thus, (66) is rewritten as

L =Y2+ ...,
52:x1+,32y1+..., (71)
Yo=y1+...,

yl:Ml(x1+y1)—x2+M2—y%+...

where M, = Ml(l); we also drop the coefficient §; because it is proportional to do» (see (68)) and,
hence, it tends to zero as ¢ — +o00.
Finally, the transformation

$38w=$2—52y2+%’ $?ew:$1+%’ y{ww:yle%, ygew:y2+%
brings the map to
Tr=y2+ ...,
To=T1+..., (72)
Yo=y1+...,

yl:Ml(x1+y1)—x2+M2—y%+...

where
M, = M. - o
9= My + (2(1 — My) + 1
Note that one can make one more coordinate transformation, asymptotically close to identity
as i — oo (it, therefore, does not change the form (72) of the map), such that the symplectic
form (67) reduces to

dzy \(dyr — Midys) + day [\ dys (73)

for all sufficiently large 3.

Summarizing, we have reduced the first return map 7; to the form (72), i. e. we have made it
asymptotically close, along with (r — 1) derivatives with respect to (z, y) and (r — 2) derivatives with
respect to M; and My, to the Hénon-like map (54). The final formulas for M; and M are'!

M, = )\_i(dzg cos i — doy sinip + o(1))
My = — X\ *(d3, + d3,) Do(p +

+ AZ%{IEQF (c12da1 — c11daz) — y; da1 — Yy dao} + 0(NY)).

V3, + ds,

Obviously, one can always find the regions arbitrarily close to (u = 0, ¢ = p) such that for
respectively large 4, the range of (M7, M>) in these regions includes all sufficiently large values. The
lemma is proven. [ |

(74)

HWe use (58), (69), (70) along with identities (44) and also take the smallness of da2 cosip — do1 sin iy into account.
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6. Bifurcations of the fixed points in the rescaled map

The main (codimension one) local bifurcations of symplectic maps are [3]:

1) bifurcations of a fixed point with the double multiplier (+1);

2) bifurcations of a fixed point with the double multiplier (—1);

3) bifurcations of a fixed point with a complex conjugate pair of double multipliers on the unit
circle (i. e. with the multipliers of the kind 11 » = v3 4 = e, w # 0, 7).

In a sense, these bifurcations correspond, respectively, to a saddle-node bifurcation, period-
doubling bifurcation and Andronov-Hopf bifurcation in general dynamical systems.

In the Hénon-like map

g

2 =21, T1 =Y2, Y2 = Y1,

_ 5 (75)
U = —zo+ Mi(x1 +y1) + My — y5

all three bifurcations are encountered. We denote the corresponding bifurcation curves on the plane M;
and My as, respectively, LT, L~ and L“. To find these curves, note first that it follows from (75) that
the coordinates of a fixed point satisfy 1 = 9 = y; = yo = z where

22 4+22(1 = My) — My =0. (76)
The characteristic equation at the fixed point is
vt — M3 + 2202 — Miv+1=0. (77)
By (76)—(77), the curve L™ : 11 = v = 1 is given by the following system

22 4+22(1 — My) — My =0,

(78)
1—-M +2z= 0,
which recasts as
Lt : My=—(M; —1)% (79)
The curve L™ : vy = vy = —1 is given by
22 4+22(1 — M) — My =0,
(L= M) = My (80)
1+M;y+2=0,
which transforms to
L™ : My=(M; +1)(3M; —1). (81)
For the curve L¥ : v 9 =13 4 = e we have
22 4+22(1 — M) — My =0,
(1=20) = My (82)
M, =4cosw, z =2+ cos2w,
which may be rewritten as
o =L My a2 (83)
LY : My = 8(1—i— 3 J(M7 —16M; +24) and |M| <4.

Note that at |M;| > 4 the same equation (83) defines some auxiliary (non-bifurcational) curves Lg
and Ly_ which correspond to the fixed point with double real multipliers: v1 o =, v3 4 = v~ L. The
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Wuloc(x1=x2= 0)

Fig. 2.

curve Ly lies in the region M; > 4 and corresponds to positive v, and the curve Ly lies in M; < —4
and corresponds to negative .

The bifurcation diagram is shown in Fig. 2. We see that the plane (Mj, M) is divided into 9
regions by the curves Ly, L_, L, and Lg..

At My, My from region I the map (75) has no fixed points. In the other regions it has exactly
two fixed points of the following types.

Region II. A saddle (+, —) (i. e. a pair of positive and a pair of negative real multipliers) and
a (1—) elliptic point (i. e. a pair of multipliers on the unit circle and a pair of real negative multipliers).

Region III. A saddle (+, —) and a 2-elliptic point. p Region IV. A (1+) elliptic point and a
2-elliptic point.

Region V. A (1+) elliptic point and a saddle-focus.

Region VI. A saddle (+, +) and a (1+) elliptic point.

Region VII. A saddle (+, —) and a saddle (—, —).

Region VIII. A saddle (4, —) and a saddle-focus.

Region IX. A saddle (+, —) and a saddle (—, —).

Note also 4 codimension-two points: B; corresponds to a fixed point with the
multipliers (=1, —1, —1, —1); By corresponds to a fixed point with the multipliers (=1, —1,+1,+1); By
corresponds to a fixed point with the multipliers (+1, +1, +1, +1); and Bs corresponds to one fixed
point with the double multiplier (—1) and the other fixed point with a complex conjugate pair of
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multipliers on the unit circle.

In the regions III and IV (the dashed curvilinear triangle without the segment (B2, B3) in Fig. 2)
the map (75) has a 2-elliptic fixed point. Let us show that the 2-elliptic fixed point is generic at almost
all points in this region, except for some finite number of curves.

Indeed, let 1 = z2 = y1 = y» = 2z be an elliptic fixed point of (75) with the
multipliers (e*®1, e*™2), Let us denote ¢ = (z9 — 2, ; — 2, Y2 — 2, Y1 — 2). Then the map (75)
is written as

0O 1 0 0
0O 0 1 0
0O 0 0 1 —¢
-1 M1 2z M1

& . (84)

e
Il
—_ o O O

The complex eigenvector corresponding to a multiplier e’ is, obviously, (1, e, e**, e3*). Therefore,
if w; # wo, the linear part is diagonalized after the transition to the (complex) coordinates (u, v)

defined as follows:

1 1 1 1
w1 —iw1 1w —iw2
e « | e e <l e
5 =u eZiwl +u e*Ziwl +v eQiQJQ +v 6727:(4)2 ’ (85)
63iwl e—3iwl e3iw2 e—3iuI2

where the stars denote complex conjugation. In particular, the third component &3 of € is
53 — ue?iwl + u*e—inl + ve?in + v*e—QiuIz.
In the new coordinates the map is written as

U= eWly 4+ i ) e~ w1 (u€2w1 4 u*e—szl 4 ’062“’"2 4 ’U*e_QM2)2,
4 sin wy (cos wy — cos wy)

1
4 8in w9 (cos wy — cOoS wo)

(86)
e w2 (ueQZwl _i_u*ef?zwl +v622w2 +U*€72zw2)2_

T = ey +
To reduce the map to the normal form we must eliminate all quadratic terms. It is done here by the
standard normalizing transformation:

7
4 8in w1 (cos wy — cos wo)

_ —w
Upew = U + e MW (u, v, wy, we),

. (87)
(3 —iw
Unew = UV + N € 2W(U7 u, wa, wl)a
4 sin wa(cos wy — €oS wy)
where
44w1 —4iw 41w
W(u, v) = u?—2 5 w —2— 2 5 2_¢ 5
w1 _ o2iw1 ew1 _ 1 w1 _ o—2iw: w1 _ o2iws
—4iwy 2i(wi+w2)
bovt—2 ¢ — 4 2up——— (88)
el 1 W1 _ p—2iws w1 _ pi(w1tws)
7272(&]1«}*&]2) Zi(wl 7(4}2) 2i(u}27w1)
+ 2u*v*—E . B T Y )} R < —
ewr e—z(wl—l—wz) Wl ez(wl—wz) ewr ez(wg—wl)

Note that we assume additionally here that there is no strong resonances of the kind wy o = 27/3,
w) = 2w, wy + 2wy = 27, 2wy + wy = 27, 2w = wa.
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After the transformation the map takes the form (we omit lengthy computations)

T = eyl + — L 5 {uu*Q (w1, wo) +vv* Qo (wr, wa)}) + ...,
8 sin wy (cos wy — cos wy) (89)
7= eyl + — L {vv*Q (w2, w1) + uu*Qg(we, wi)}) + ...,
8 sin wy (cos wo — coswy )?
where
1 2 1+ 4cosw;
Q = _
1w 92) = ooty Foosws T T—cosws (1~ coswn)(1 1 2005 1) (90)
Qo (w1, wp) = 2 2 4 cos wy 4 cos wy

1—coswy 1—cosw; coswi + 2coswo  cos2wy + coswy

The dots in (89) stand for other cubic and higher order terms. If we assume more non-resonance
conditions: wi o # 7/2, w1 # 3wa, wy # 3wi, w1 +wy F T, 3w £ wo # 27, 3ws + wi # 2m, then
all the cubic terms, not presented in formula (89), are non-resonant and can be killed by the further
normalizing transformation which does not change the form (89) of the map. So, we may assume that
there is no other cubic terms in (89). Thus, in symplectic polar coordinates

u = Mewl | cos wg — coswy| , v = 8p26i02| cos wg — cos wi |,
the map is written as
p=p(l+o(p), O=0+w+Qp+o(p) (91)
where p = (p1, p2), 0 = (61, 02), w = (w1, wy) and

0= 1 Siangl(wl, wg) SinUJZQQ(UJl, (,«.)2)
sinwy sinwe \sinwy Qg (we, wi) sinwi;Qy(we, wy) /)’

The elliptic point is generic if det Q # 0, i. e. if
Q1 (w1, w2) (w2, w1) — Qa(wr, w2) Q2 (w2, w1) # 0. (92)

The left-hand side is some rational function of cosw; and coswy (see (90)), so it may vanish only on
a number of curves in (w1, wa)-plane, if it is not identically zero. It is seen from (90) that if we fix
some wsy, then at w; close to zero the left-hand side of (92) is of order

7l 1

3(1—coswy)?’

so it is non-zero indeed.

Thus, the 2-elliptic fixed point is generic for almost all (wq, we), hence, for almost all (M, Ms)
from the region IITUIV.

Let us now prove the main theorem (see Section 1). Note that a generic elliptic point of a
symplectic map remains generic for any close symplectic map. Thus, by virtue of Lemma 4, for any
sufficiently large ¢, the first return map 7; has a generic 2-elliptic fixed point in some region A; in
(i, @)-plane close to the point (u = 0, ¢ = ¢p). This completes the proof.
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Uzyuaiores 6upypranuu, IPUBOLANME K BO3HUKHOBEHUIO SINTUNTUYCCKUX MEPUOIUUECKUX TPAGKTOPUIi B Ciydae
YeThIPEXMEPHBIX CUMILIEKTUYECKUX AU PeoMophu3MoB (MM raMUILTOHOBBIX OTOKOB C TPEeMs CTeNeHAMU CBO6GO-
Ibl), UMEIONX HerpyGyIo FOMOKINHIYECKYIO TPAEKTOPUIO MEPUOLUIECKOM OPOUTHI TUIIA CeLI0o-POKYC.
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