Прогнозирование в электроэнергетике и новые факторы роста спроса на электроэнергию

Инфраструктурные (обслуживающие) отрасли экономики, такие как электроэнергетика, газовая отрасль, железнодорожный транспорт, не могут развиваться без долгосрочных программ развития. Это связано, с одной стороны, с длительным инвестиционным циклом инфраструктурных проектов, а с другой — с зависимостью от этих планов стратегий развития всех других отраслей экономики.

Электроэнергетика России последние 15 лет фактически развивалась в отсутствие долгосрочного плана, что во многом определялось тем, что советского «задела» вполне хватало для обеспечения потребностей экономики. Но с восстановлением экономического роста, начиная с 2000-х годов, его перестало «хватать», и это нашло отражение в увеличении неудовлетворенного спроса на электроэнергию (доля

Рассмотрим количественные и качественные характеристики спроса на электроэнергию, которые были заложены в эти прогнозы.

Количественные характеристики спроса
В обосновании Генеральной схемы размещения объектов электроэнергетики до 2020 года (далее — Генеральная схема), одобренной Правительством РФ,

гетики до 2030 года.

В обосновании Генеральной схемы размещения объектов электроэнергетики до 2020 года (далее — Генеральная схема), одобренной Правительством РФ, прогнозируется ежегодный рост спроса на электроэнергию до 2020 года на уровне 4,1% по базовому сценарию и 5,2% по максимальному. За последние 10 лет ежегодный прирост спроса на электроэнергию никогда не превышал 4%, то есть значения базового сценария Генеральной схемы (рис. 1). Средний ежегодный прирост электропотребления в 2000—2006 годах составил 2,3%.

неудовлетворенных заявок на подключе-

ние в 2006 году, по данным Минпромэнерго России, достигла 87%) и значитель-

ных ограничениях потребителей начиная

с зимы 2005-2006 годов. Последнее об-

стоятельство повлияло на форсированное

создание различных стратегий развития

отрасли — Генеральной схемы развития объектов электроэнергетики до 2020 года,

Программы развития электроэнергетики до

2020 года, Целевого видения электроэнер-

При этом в краткосрочной перспективе на 2006-2010 годы в Генеральной схеме заложены уровни ежегодного прироста еще выше — 4.9 и 6.0% соответственно (см. таблицу).

Во многом обоснованием для этих прогнозов стало двукратное увеличение

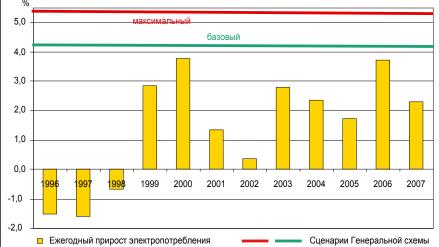


Рис. 1. Ежегодный прирост электропотребления в России в 1996—2007 годах и прогнозные уровни электропотребления Генеральной схемы*

^{*} Данные по 2007 году — прогноз.

спроса на электроэнергию в 2006 году - потребление электроэнергии возросло на 3,9%, производство — на 4,1%. И в подобном росте спроса действительно была виновата не зима. Если фактор увеличения спроса на электроэнергию в результате нетрадиционно низких температур в период прохождения осенне-зимнего максимума нагрузки (ОЗМ) 2005-2006 годов способствовал дополнительному приросту энергопотребления на 0,36%, то необычно высокие температуры в декабре — январе (ОЗМ 2006-2007 годов) стали причиной снижения спроса на электроэнергию на 0,44%. То есть температурные экстремумы взаимно нивелировали свое влияние на прирост энергопотребления. Поэтому рост спроса на электроэнергию в 2006 году в значительно меньшей степени является следствием природного (температурного) фактора.

Тогда почему нет оснований в увеличении прогноза спроса до этих значений?

Вряд ли стоит строить прогноз по одному году. О том, что резкое увеличение спроса на электроэнергию в 2006 году не было тенденцией, свидетельствуют показатели 2007 года. Текущий год «компенсировал» показатели предыдущего: по итогам 9 месяцев прирост производства электроэнергии составил 1,7%, то есть по итогам двух последних лет средний ежегодный прирост электропотребления составит около 2,5–2,8%.

Рост спроса на электроэнергию имеет устойчивую корреляцию с ростом ВВП и ростом промышленного производства (рис. 2). Отношение прироста электропотребления к приросту ВВП называется эластичностью электропотребления и имеет относительно постоянную величину для длительных периодов. Например, расчеты Института проблем естественных монопо-

Параметры Генеральной схемы размещения объектов электроэнергетики до 2020 года

Показатели	2005 г.	2006-2010 г.		2011-2015 г.		2016-2020 г.	
		Базовый	Макси- мальный	Базовый	Макси- мальный	Базовый	Макси- мальный
Параметры социально-экономического	развития						
Среднегодовой рост ВВП,%	6,4	6,2	7,1	6,2	7,5	6,2	7,5
Индекс промышленного производства, %	4,0	4,5	5,0	4,9	5,4	5,0	5,9
Прогноз электропотребления							
Потребление электроэнергии, млрд кВт-ч	941	1197	1260	1426	1600	1710	2000
Среднегодовой темп роста, %	1,8	4,9	6,0	3,6	4,9	3,7	4,6
Эластичность к ВВП, %/%	0,28	0,8	0,85	0,58	0,65	0,59	0,61
Электроемкость ВВП, % от 2005 г.	100	94	96	83	84	74	73
Вводы генерирующих мощностей, ГВт							
Всего новая мощность	_	41,9		72,4	101,5	67,4	89,6
ГЭС	_	5,5		6,2	6,9	10,6	15,3
АЭС	_	3,4		11,2	11,2	19,1	24,9
ТЭС, в том числе:	_	33,0		55,0	83,4	37,7	49,4
— на газе	_	24,3		30,6	31,4	23,3	24,1
— на угле	_	8,7		24,4	52,0	14,4	25,3
— техническое перевооружение	_	3,3		22,7	22,7	12,1	12,1
— новое строительство и расширение	_	29,7		32,3	60,7	25,6	37,3
Потребность в инвестициях на объекты і	генерации,	млрд долл.					
Генерация — всего, в т. ч.	_	64,5	74,1	87,5	126,2	97,9	133,0
ГЭС	_	9,3	9,5	16,3	19,9	23,3	33,2
АЭС	_	8,8	10,3	20,7	23,3	35,0	45,2
ТЭС, в т. ч.:	_	46,4	54,2	50,4	83,0	39,6	54,7
— техническое перевооружения	_	5,5	5,7	15,0	15,0	8,9	8,9
— новое строительство	_	40,9	48,5	35,5	68,0	30,7	45,8
Потребность в инвестициях на электрич	еские сети, і	илрд долл.					
Электрические сети ЕНЭС, в т.ч.	_	21		28		42	
Новые сети	_	15		19		31	
Реновация сетей	_	5		7		8	
Прочие затраты	_	1		2		3	

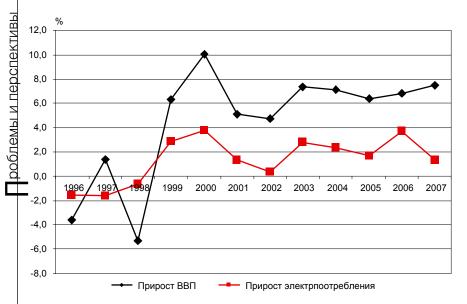


Рис. 2. Ежегодный прирост электропотребления и ВВП в России, 1996-2007 годы

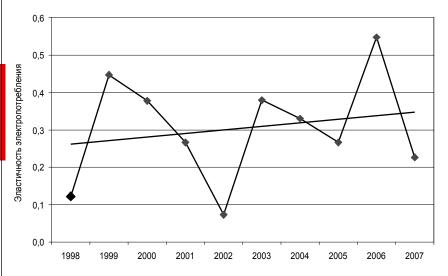


Рис. 3. Эластичность электропотребления в России, 1998-2007 годы

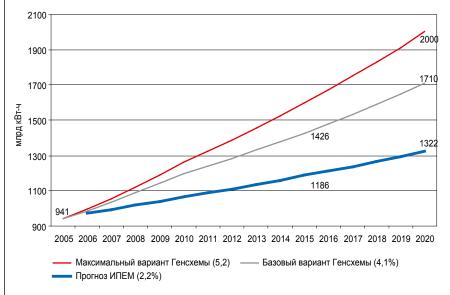


Рис. 4. Прогноз электропотребления в России до 2020 года

лий (ИПЕМ) по США для периода 1980—2006 годов показали значение эластичности электропотребления по ВВП на уровне 0,3–0,5. Расчет для России в период восстановления экономического роста (1998—2007) показал значение эластичности на уровне 0,3 (рис. 3).

Для того чтобы в базовом варианте иметь средний рост спроса на электроэнергию на уровне 4% в год, темпы роста ВВП должны быть выше 10% в год. Однако в базовый сценарий Генеральной схемы заложены темпы роста ВВП на уровне 6,2% в год, что соответствует показателям оптимистического (инновационного) сценария Концепции социально-экономического развития России до 2020 года, разработанной Минэкономразвития России (около 6,5%).

В Генеральной схеме прогнозируется, что значение эластичности электропотребления в ближайшие годы (2006–2010) возрастет до 0,8, а к 2020 году снизится до 0,6. Показатель эластичности достаточно консервативен и устойчив и вряд ли может резко измениться в краткосрочной перспективе. Более того, нет оснований для его значительного роста, так как в среднем по миру последние 50 лет он имел тенденцию к снижению, а высокие значения эластичности электропотребления характерны для периода индустриализации.

По расчетам ИПЕМ прогноз роста потребления электроэнергии в Генсхеме электроэнергетики завышен в 2 раза, и электропотребление в России в 2020 году не превысит 1350 млрд кВт-ч (рис. 4).

Качественные характеристики спроса

Прогноз Генеральной схемы предусматривает уплотнение суточного графика нагрузки энергосистемы за счет опережающего роста промышленного потребления. Попробуем с этим не согласиться, так как в течение последних лет идет явная тенденция к разуплотнению графика нагрузки.

Высокие темпы экономического роста России, основывающиеся на благоприятной конъюнктуре цен на энергоносители на мировом рынке, при относительно низких темпах прироста внутреннего промышленного производства (3,9%), быстром развитии непроизводственной сферы, росте благосостояния населения

и потребительском буме стали предпосылками того, что основными генераторами роста спроса на электроэнергию стали население и непроизводственная сфера. Подобный «непромышленный» спрос является долгосрочной тенденцией, отражающей общий тренд в экономике в сторону развития непроизводственного сектора и роста качества жизни населения, что подразумевает повышение энергоемкости данных сфер экономики. течение последних 10 лет рост потребления электроэнергии населением в среднем почти в 2 раза превышал рост промышленного энергопотребления. Данная тенденция характерна не только для мегаполисов и центральных областей, но и для традиционно промышленных регионов.

Свидетельством этих тенденций являются структурные изменения в электропотреблении. Это отражается в появлении второго сезонного повышения электропотребления — летнего максимума нагрузки. Последние 7 лет темпы прироста энергопотребления в летние месяцы в 1,5-2,0 раза превосходили темпы прироста в период ОЗМ (рис. 5). А в 2006 году даже в абсолютных значениях прирост в период ОЗМ был меньше — 18 млрд из 38 млрд кВт.ч. Особенно актуальна данная проблема для южных регионов России в августе прошлого года в Кубанской энергосистеме был введен режим высоких рисков, что было обусловлено ростом нагрузки на энергосистему, в результате чего высоковольтные сети и маслонаполненное оборудование трансформаторных подстанций работали на пределе возможностей.

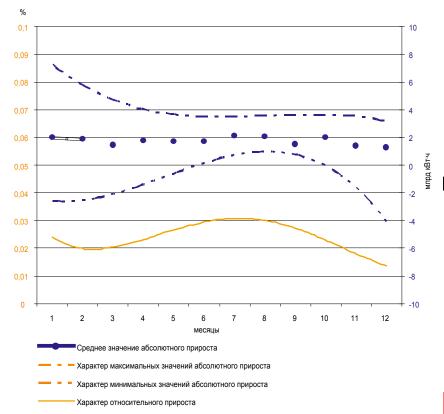


Рис. 5. Средний прирост электропотребления по месяцам в России в 2000-2006 годах

На рис. 5 видно, что характер относительного прироста указывает на более высокий и стабильный рост энергопотребления в летние месяцы. С другой стороны, график, отражающий средний прирост энергопотребления по месяцам, показывает, что в абсолютном значении данная величина в течение года изменяется незначительно. Но при этом графики минимальных и максимальных значений абсолютного прироста демонстрируют, что в летние месяцы прирост является бо-

СААКЯН Юрий Завенович -

генеральный директор Института проблем естественных монополий с мая 2005 г. Кандидат физико-математических наук. Родился в 1956 г.

В 1979 г. окончил механико-математический факультет Московского государственного университета им. М. В. Ломоносова. До 1991 г. занимался научной деятельностью. Начиная с 1991 г. работал на руководящих должностях в различных коммерческих компаниях. Является членом Межведомственной комиссии Правительства РФ по вопросам реализации структурной реформы на железнодорожном транспорте, членом Российского газового общества.

лее стабильным и не зависит от природных факторов (низкий разброс значений), в отличие от периода ОЗМ (большой разброс).

Появление второго сезонного максимума нагрузки и смещение прироста энергопотребления в сторону непромышленного сектора экономики приводят к нарастанию неравномерности графика нагрузки, как сезонного, так и суточного. Основная часть прироста приходится на пики электропотребления, что еще больше осложняет проблему дефицита мощности. Именно растущая неравномерность суточного графика нагрузки является тем фактором, который формирует вероятность возникновения не дефицита, а псевдодефицита энергомощностей — дефицита регулирующих, пиковых мощностей, удовлетворение которого сопряжено с гораздо более существенными финансовыми затратами.

Есть все основания полагать, что тенденция к опережающему росту непромышленного потребления электроэнергии является долгосрочной тенденцией, так как с повышением качества жизни и развитием сферы услуг будет повышаться доля непромышленного потребления электроэнергии.

Поэтому, на наш взгляд, прогнозирование в электроэнергетике нуждается в большей точности как в части количественных, так и качественных показателей.

Почему, например, не стоит завышать прогнозы в части количественных показа-

телей? Завышенные показатели спроса на электроэнергию приведут к завышенным объемам строительства энергетических мощностей. Так, в период 2006—2010 годов предполагается ввод более 40 ГВт в год, в 2011—2015 годах — 72 ГВт в базовом сценарии и 102 ГВт в максимальном, в 2016—2020 годах — 67 ГВт и 90 ГВт соответственно. При этом в течение последней пятилетки в России было введено всего 9 ГВт.

В принципе в излишнем резервировании мощностей нет ничего плохого, за исключением завышенных тарифов, так как их инвестиционная составляющая зависит как раз от прогнозов роста спроса и необходимых объемов вводов. Так, исходя из прогнозов роста спроса на уровне 4,1% РАО «ЕЭС России» разработало Инвестиционную программу объемом 3 трлн рублей, 1,2 трлн рублей из которых придется на тарифные источники.

Проблема перспективного роста тарифов сейчас исключительно актуальна в связи с ростом цен на газ. По прогнозу Минэкономразвития России цены на электроэнергию для конечного потребителя к 2011 году вырастут до 6,8 цента/кВт·ч, то есть на 51% при росте цен на газ до 121 долл./тыс.куб.м или на 143%. По нашим оценкам, рост конечной цены на электроэнергию только за счет роста цены на газ и выполнения Инвестиционной программы РАО «ЕЭС России» составит к 2011 году не менее 90%.

Ю. З. Саакян, Н. В. Порохова

ПОРОХОВА Наталья Владимировна -

руководитель отдела исследований электроэнергетической отрасли Института проблем естественных монополий. Родилась в 1983 г.

Окончила географический факультет Московского государственного университета им. М. В. Ломоносова.

До 2005 г. работала в Федеральной службе по тарифам РФ. С ноября 2005 г. является сотрудником Института проблем естественных монополий, а с 2006 г. возглавляет отдел исследований электроэнергетической отрасли