Иммунология. 2006. №4. С.134-136.

ИММУНОСТИМУЛИРУЮЩИЕ СВОЙСТВА ПОЛИОКСИДОНИЯ ПРИ ОСТРОМ ОТРАВЛЕНИИ ТОКСИЧНЫМИ ХИМИКАТАМИ ИПРИТОМ И ЛЮИЗИТОМ

П. Ф. Забродский, В.Г. Мандыч, В.Г. Германчук

Саратовский военный институт радиационной, химической и биологической защиты

В экспериментах на неинбредных крысах установлено, что при остром отравлении токсичными химикатами люизитом и ипритом $(0,5\ DL_{50})$ введение полиоксидония в дозе $100\ \text{мкг/кг}$ в течение 4 сут (ежедневно, однократно) частично восстанавливает вызванную ими супрессию показателей системы иммунитета и снижает индуцированное токсикантами перекисное окисление липидов.

Ключевые слова: люизит, иприт, иммунотоксичность, полиоксидоний, перекисное окисление липидов

IMMUNOSTIMULATED PROPERTIES OF POLYOXIDONIUM AT THE ACUTE POISONING OF TOXIC CHEMICALS SULPHUR MUSTARD AND LEWISITE

P. F. Zabrodskii, V.G. Germanchuk, V.G. Mandych

Saratov Military Institute of Radiation, Chemical and Biological Defense

It was established in experiments on noninbred rats that acute intoxication of toxic chemicals (sulphur mustard , lewisite) at a dose of 0,5 LD $_{50}$ the administration of polyoxidonium at a dose of 100 µg/kg during 4 days (daily, at single dose)) particulate reduces caused by its suppression of parameters of immune system and reduces induced by toxic chemicals a peroxide oxidizing of lipids.

Keywords: sulphur mustard, lewisite, immunotoxicity, polyoxidonium, peroxide oxidizing of lipids

Токсичные химикаты (ТХ) - иприт, люизит, вещество VX, зарин – являются основным элементом химического оружия (ХО) и подлежат

уничтожению согласно международным соглашениям на специальных промышленных объектах [2,8]. Не исключена возможность аварий на данных объектах, а также массовые поражения людей при транспортировке и хранении ТХ. Позитивные шаги международного сообщества, в том числе и России, в области ликвидации и полного запрета XO не уменьшили реальность его использования в террористических и криминальных целях [4,8,14]. Кроме того, существует возможность возникновения аварийных ситуаций в процессе уничтожения ХО, которые могут сопровождаться выбросом в окружающую среду ТХ или продуктов их деструкции и приводить к поражению персонала объектов уничтожения ХО или населения прилегающих территорий [8]. Кроме того, до сих пор не исключено использование ТХ в локальных вооруженных конфликтах [13,14]. Иприт и люизит – ТХ кожно-нарывного действия (везиканты) [13], их запасы, подлежащие уничтожению, значительно превышают запасы отравляющих веществ (OB). Из TX кожно-нарывного действия иприт широко принялся в период первой мировой войны и 10 локальных вооруженных конфликтов 20 столетия [14], в частности в Ирано-Иракском конфликте [12]. В настоящее время за рубежом активно ведутся разработки поиски высокоэффективных терапевтических (антидотных) средств при поражении ТХ [10], исследуются биомаркеры для дифферинциальной диагностики поражением [11]ижох ипритом ИЛИ люизитом изучаются отдаленные эффекты поражения ипритом [14].

Острые отравления TX кожно-нарывного действия ΜΟΓΥΤ сопровождаются инфекционными осложнениями И заболеваниями, связанными снижением показателей иммунного статуса [5]. Антиоксидантные, иммуностимулирующие, детоксиксикационные, мембраностабизизирующие свойства полиоксидония [9] позволяют предполагать возможность снижения при его применении поражения системы иммунитета различными токсикантами, которые могут приводить к формированию вторичных иммунодефицитных состояний [4], в частности, ТХ ипритом и люизитом.

Целью исследования являлась оценка иммуностимулирующих свойств полиоксидония при остром отравлении ТХ, относящимся к ОВ кожнонарывного действия, ипритом (β , β' -дихлордиэтилсульфидом, 2, 2′-дихлордиэтилсульфидом) и люизитом (β -хлорвинилдихлорарсином, 2-хлорэтенилдихлорарсином).

Методика исследований. Эксперименты проводились на беспородных крысах обоего пола массой 180-240 г. ТХ вводили подкожно в дозе 0.5 DL₅₀. (DL_{50}) иприта и люизита при подкожном введении диметилсульфоксида составляли соответственно 5,5+0,3 и 2,8+0,3 мг/кг). Полиоксидоний (ПО) вводили внутримышечно в течение 4 сут в дозе 100 мкг/кг после применения ТХ ежесуточно, однократно. Показатели системы иммунитета оценивали общепринятыми методами в экспериментальной иммунологии и иммунотоксикологии [3]. Гуморальный иммунный ответ к тимусзависимому (эритроцитам барана ЭБ) Т-независимому (брюшнотифозному Vi-антигену - Vi-Ag) антигенам оценивали через 5 сут по числу антителообразующих клеток (АОК) в селезенке после введения ТХ с одновременной внутрибрюшинной иммунизацией крыс данными антигенами в дозах $2\cdot10^8$ клеток и 8 мкг/кг соответственно. Данные тесты характеризуют синтез IgM В-клетками соответственно с участием Th1-лимфоцитов и без них. Активность естественных клеток-киллеров (ЕКК) определяли по показателю естественной цитотоксичности (ЕЦ) через 5 сут после острого отравления ТХ спектрофотометрически. Антителозависимую клеточную цитотоксичность – АЗКЦ (функцию К-клеток) исследовали через 5 сут после 10^{8} ЭБ, иммунизации крыс используя спленоциты, ИΧ спектрофотометрическим методом. Формирование гиперчувствительности замедленного типа - ГЗТ (в частности, активность Th1-лимфоцитов) оценивали у животных по приросту массы стопы задней лапы в %. При этом крыс внутрибрющинно иммунизировали 10^8 ЭБ через 30 мин после введения ТХ. Разрешающую дозу ЭБ (5·10⁸) вводили под апоневроз стопы задней лапы через 4 сут. Реакцию ГЗТ определяли через 24 ч. При исследовании гуморальных и клеточных иммунных реакций крыс иммунизировали практически одновременно с введением ТХ. Перекисное окисление липидов (ПОЛ) оценивали по суммарной продукции радикалов (СПР) методом люминолзависимой хемилюминесценции, активированной форболовым эфиром (0,156 МКм) [15], по содержанию малонового диальдегида (МДА) [7], активности каталазы и пероксидазы в крови спектрофотометрически [1] через 3 сут после применения ТХ. При этом активность каталазы и пероксидазы являлась показателем функции антиоксидантной системы (АОС).

Полученные данные обрабатывали статистически с использованием tкритерия достоверности Стьюдента.

Результаты и обсуждение. Под влиянием острого отравления ипритом и люизитом в дозе 0,5 DL_{50} (табл. 1) происходило снижение гуморального иммунного ответа к Т-зависимому антигену по сравнению с контрольным уровнем соответственно в 4,02 и 3,08 раза (p<0,05) и в меньшей степени - к Т-независимому - соответственно в 2,58 и 1,81 раза (p<0,05). После действия иприта отмечалась также существенная редукция АЗКЦ, активности ЕКК, и реакции ГЗТ соответственно в 2,64; 2,56 и 2,05 раза (p<0,05). Аналогичная, но менее выраженная супрессия данных параметров была выявлена после острой интоксикации люизитом.

Таблица 1. Влияние полиоксидония на показатели системы иммунитета крыс при острой ипритом и люизитом $(0.5 \, DL_{50}) \, (M\pm m, n=7-10)$

G	АОК к ЭБ,	AOK κ Vi-	АЗКЦ, %	ЕЦ,%	ГЗТ, %
Серии	10^{3}	Ag, 10^3			
ОПЫТОВ					
Контроль	43,4 <u>+</u> 3,5	31,2 <u>+</u> 2,6	13,2 <u>+</u> 1,4	35,1 <u>+</u> 3,3	37,9 <u>+</u> 2,5
Иприт	10,8 <u>+</u> 1,5*	12,1 <u>+</u> 1,9*	5,0 <u>+</u> 0,9*	13,7 <u>+</u> 2,4*	18,5 <u>+</u> 1,9*
Иприт +ПО	29,7 <u>+</u> 2,7*°	23,7 <u>+</u> 2,2*°	8,8 <u>+</u> 1,1*°	23,0 <u>+</u> 2,7*°	29,0 <u>+</u> 2,6*°
Люизит	14,1 <u>+</u> 1,8*	17,2 <u>+</u> 2,0*	6,3 <u>+</u> 0,8*	17,2 <u>+</u> 2,3*	21,4 <u>+</u> 2,1*
Люизит +ПО	36,5 <u>+</u> 3,3	26,7 <u>+</u> 2,7	10,1 <u>+</u> 1,2	27,5 <u>+</u> 3,0	33,3 <u>+</u> 2,3

Примечание: * -p<0,05 по сравнению с контролем; * -p<0,05 по сравнению с контролем и показателем при интоксикации.

Применение ПО частично восстанавливало показатели системы иммунитета после острого действия TX, при этом после отравления люизитом статистически значимых различий параметров по сравнению с контролем не выявлено (p>0,05).

ТХ существенно активировали ПОЛ, существенно снижая активность АОС - каталазы, пероксидазы (табл. 2). Действие иприта вызывали уменьшение данных показателей соответственно в 1,92 и 1,88 раза (р<0,05), а люизита – в 1,66 и 1,57 раза (р<0,05). Под влиянием иприта и люизита существенно увеличивалось содержание в крови СПР соответственно в 1,75 и 1,56 раза (р<0,05) и МДА - в 1,41 и 1,28 раза (р<0,05).

ПО Использование приводило К частичному восстановлению показателей ПОЛ после острой интоксикации люизитом (при этом статистически достоверных различий с контролем не выявлено – р>0,05) и существенному увеличению параметров АОС и снижению СПР и МДА (p<0,05) после отравления ипритом по сравнению с показателями при интоксикации. Следует отметить, что при действии данного ТХ комбинации ПО установлены статистически c значимые параметров ПОЛ по сравнению с контрольными значениями - p<0,05).

Таблица 2. Влияние полиоксидония на показатели ПОЛ крыс после острой ипритом и люизитом (0.5 DL_{50}) (M+m, n =7-10)

	Каталаза,	Пероксидаза,	Суммарная	Малоновый
Серии опытов	ммоль/мин/л	мкмоль/мин/л	продукция	диальдегид,
			радикалов,	нмоль/мл
			усл. ед.	
Контроль	260,3 <u>+</u> 25,1	47,3 <u>+</u> 3,9	31,5 <u>+</u> 3,3	6,23 <u>+</u> 0,35
Иприт	135,2 <u>+</u> 14,3*	25,2 <u>+</u> 2,3*	55,3 <u>+</u> 4,8*	8,81 <u>+</u> 0,39*
Иприт +ПО	188,5 <u>+</u> 19,4*	32,8 <u>+</u> 3,0*°	40,2 <u>+</u> 3,7*°	7,56 <u>+</u> 0,30*°
Люизит	157,1 <u>+</u> 22,7*	30,1 <u>+</u> 2,9*	49,0 <u>+</u> 3,8*	7,98 <u>+</u> 0,32*
Люизит +ПО	214,3 <u>+</u> 21,2	41,7 <u>+</u> 3,4	38,9 <u>+</u> 4,0	7,02 <u>+</u> 0,33

Примечание: * -p<0,05 по сравнению с контролем; * -p<0,05 по сравнению с контролем и показателем при интоксикации.

Выявленное снижение показателей системы иммунитета при острой интоксикации люизитом может быть обусловлено ингибированием моно- и дитиоловых ферментов (B частности, дегидролипоевой кислоты пируватоксидазной системы), моноаминоксидазы, аланинаминотрансферазы, аспартатаминотрасферазы, снижением функции кофермента А, нарушением цикла трикарбоновых кислот, блокированием ДНК-полимеразы, снижением ΑДФ образования ΑТФ (разобщением тканевого дыхания И фосфорилирования) [4,6]. окислительного Иммунотоксический иприта обусловлен ингибированием многочисленных энзимов иммуноцитов, мембранотоксическим действием, нарушением нуклеинового обмена иммунокомпетентных клеток [4,13], изменением синтеза лимфокинов [11].

Полученные результаты свидетельствуют о том, что одним из механизмов снижения параметров системы иммунитета под влиянием иприта и люизита является инициация ПОЛ (реализация одного из механизмов общей иммунотоксичности ядов [4]). Это подтверждается высокими коэффициентами корреляции (КК) между числом АОК к ЭБ при остром отравлении ипритом и содержанием каталазы и пероксидазы в крови крыс (число коррелируемых пар - n=7), которые составляли соответственно 0,779±0,148 (р<0,05) и 0,795±0,139 (р<0,05). КК при острых отравлениях люизитом между ЕЦ и содержанием каталазы и пероксидазы в крови крыс были равны 0,760±0,160 и 0,787±0,144 (n=7, p<0,05). Установлена обратная корреляция между числом АОК к ЭБ при остром действии ипритом и люизитом и содержанием МДА, значение коэффициента которой составило соответственно -0,770±0,154 и -0,755±0,162 (n=7, p<0,05).

ПО практически полностью и частично восстанавливает параметры системы иммунитета и связанные с ними показатели ПОЛ (и АОС) соответственно при остром отравлении люизитом и ипритом вследствие антиоксидантных, иммуностимулирующих, детоксиксикационных и мембраностабилизирующих свойств иммуностимулятора [9].

Выводы

- 1. Острое отравление токсичными химикатами ипритом и люизитом в дозе $0.5~\mathrm{DL}_{50}~\mathrm{chu}$ снижает показатели системы иммунитета (Т-зависимый и Т-независимый гуморальный иммунный ответ, антителозависимую клеточную цитотоксичность, активность ЕКК, реакцию ГЗТ).
- 2. Применение полиоксидония в дозе 100 мкг/кг в течение в течение 4 сут (ежедневно, однократно) после острого действия иприта и люизита (0,5 DL₅₀) соответственно частично и практически полностью восстанавливает параметры иммунной системы и связанные с ними показатели ПОЛ.

ЛИТЕРАТУРА

- 1. Валеева И.Х., Зиганшина Л.Е., Бурнашова З.А., Зиганшин А.У. //Эксперим. и клин. фармакология.- 2002.- Т.65, N 2.-C. 40-43.
- 2. Жуков В.Е., Клаучек В.В., Шкодич П.Е. //Токсикол. вестник.-2002.-№5.- С. 31-35.
- 3. Забродский П.Ф., Лим В.Г., Мальцева Г.М., Молотков А.О.. Иммунотропные свойства холинергических веществ / Под редакцией П.Ф.Забродского. Саратов: Издательство «Научная книга», 2005.- 251 с.
- 4. Забродский П. Ф. Влияние ксенобиотиков на иммунный гомеостаз. В кн.: Общая токсикология / Под ред. Б.А. Курляндского, В.А. Филова.- М.: Медицина, 2002. С. 352-384.
- 5. Забродский П. Ф., Германчук В.Г., Киричук В.Ф. и др.//Бюл. эксперим. биол. и мед. 2003.-Т. 136.-№8.-С. 202-204.
- 6. Ершов Ю.А., Плетнева Т.В. Механизмы токсического действия неорганических соединений.- М.: Медицина, 1989. –272 с.
- 7. Коробейникова Э.Н. // Лаб. дело.- 1989.- №7.- С.8-10.
- 8. Петров А.П., Софронов Г.А., Нечипоренко С.П., Сомин И.Н. // Рос. хим. ж. (Ж. Рос. Хим. об-ва им Д.И. Менделева). 2004. Т. XLVIII, № 2. –С.110-116.
- 9. Хаитов Р.М., Пинегин Б.В. // Иммунология. 2005.-Т. 26.-№ 4.-С. 197.
- 10. Amitai G., Adani R., Fishbein E. et al. // J.Appl.Toxicol. –2006 Vol. 26.-N 1. –P.81-87.
- Arroyo C.M., Burman D.L., Kahler D.L. et al. // Cell Biol. Toxicol. 2004. Vol.20, N
 –P. 345-359.
- 12. Balali-Moode M., Hefazi M. Mahmoudi M. et at. // Fundam. Clin. Pharmacol. –2005 Vol. 19.-N 6. –P. 713-721.

- 13. McManus J., Huebner K. M. Vesicants // Crit. Care Clin.- 2005. Vol. 21, N 4. –P. 707-718,
- 14. Saladi R.N., Smith E., Persaud A.N. // Clin. Exp. Dermatol. –2006 Vol. 1.-N 6. –P. 1-5.
- 15. Takayama F., Egachira T., Yamanaka Y. // Nippon Yakurigaku Zasshi. 1998.- Vol. 111.- P. 177-186.