Мурманская Академия Декартовой инфинитологии и Евклидовых Фракталов

РОССИЯ 183014 г. Мурманск - 14 проспект Кольский, дом 105, офис 36 тел.: +7-902-282-67-87

Е.В.Карпушкин

Точечно - цветокодированные графики натуральных простых чисел и чисел - близнецов в двухмерных - 2D - координатах Декарта

Введение в графоаналитический мир натуральных простых чисел

Теория и практика создания точечных 1-2-3-х и более цве́тных множеств натуральных простых чисел в прямоугольной - (2-D) - системе координат Декарта.

4.11

MSM (±∞: xy&xyz) INVESTIGATORS

MSM (± ∞: xy&xyz) INVESTIGATORS

Мурманск - 2016

$\begin{array}{c} \mathbf{M} \ \mathbf{S} \ \mathbf{M} \\ (\pm \infty : \mathbf{xy} \ \& \ \mathbf{xyz}) \\ \mathbf{INVESTIGATORS} \end{array}$

Е. В. Карпушкин

Новые математические разновидности числовой последовательности натуральных простых чисел и их точечно - цветокодированные графики в прямоугольной системе координат Декарта

U.II

 $MSM \\ (\pm \infty: xy\&xyz) \\ INVESTIGATORS$

 $\begin{array}{c} MSM \\ (\pm \infty; \ xy\&xyz) \\ INVESTIGATORS \end{array}$

МУРМАНСК - 2016

$\begin{array}{c} \mathbf{M} \ \mathbf{S} \ \mathbf{M} \\ (\pm \infty : \mathbf{xy} \ \& \ \mathbf{xyz}) \\ \mathbf{INVESTIGATORS} \end{array}$

Карпушкин Евгений Васильевич

КРАТКОЕ ОПИСАНИЕ ЗАЯВЛЯЕМОГО ОБЪЕКТА ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

Краткое описание заявляемого объекта интеллектуальной собственности.

1. Название объекта.

Новые математические разновидности числовой последовательности натуральных простых чисел и их точечно-цветокодированные графики в прямоугольной системе координат Декарта. Открыты не известные современным специалистам в области современной элементарной математики и Теории чисел новые числовые множества или последовательности натуральных простых чисел и их универсальные точечноцветокодированные 2-мерные графики в прямоугольной системе координат Декарта.

2. Реферат.

Современная наука о числах или Математика, с её многочисленными ответвлениями, глубоко и всесторонне обобщила очень богатый теоретический и эмпирический опыт по изучению, исследованию натуральных чисел и порождаемых ими так называемых числовых последовательностей вообще и натуральных простых чисел в частности.

Среди огромного множества открытых и уже зарегистрированных в математике числовых последовательностей, образованных с помощью натуральных чисел, остались вне поля зрения науки и факта их официальной классификации и регистрации иные числовые последовательности натуральных чисел, которые реально дополняют и обобщают целостную и незыблемую структуру самой важной в Теории чисел числовой последовательности Натуральных чисел --- Последовательности простых чисел, таких как 2, 3, 5, 7, 11, 13 и т.д., главной особенностью которых, как уже давно известно со времён древнегреческого математика Эратосфена, является то, что они имеют только два делителя: 1 (единица) и само это натуральное простое число.

Ещё одной редкой, но очень важной и принципиальной особенностью этой числовой последовательности является то, что до сих пор, спустя более двух тысяч лет после древнегреческого математика Эратосфена, по сути являющегося первопроходцем в деле изучения этих чисел, учёными - математиками так до сих пор и не найдена общая формула этой группы натуральных чисел. Например, у нечётных натуральных чисел, таких как 1, 3, 5, 7 и т.д., Общая формула этой числовой последовательности натуральных чисел имеет вид $\{A_n\} = 2n - 1$, у чётных --- $\{A_n\} = 2n$, а вот у простых натуральных чисел эта формула учёными-математиками до сих пор не определена.

3. Сведения о приоритетах и авторских правах.

Отсутствуют.

4. Сущность предлагаемого метода.

Если взять известную числовую последовательность натуральных чисел, состоящую исключительно из таких натуральных простых чисел как 2, 3, 5, 7, 11, 13, 17, 19 и т.д., и выбирать из этой последовательности, а потом соответствующим образом их сортировать, в зависимости от того, какой нечётной цифрой --- 1, 3, 7 или 9 --- завершается каждое такое число, то у нас, благодаря этому элементарному способу сортировки натуральных простых чисел, сформируются ровно 4 группы чисел, на основе которых элементарно составляются 10 новых последовательностей простых чисел. Все представленные здесь последовательности натуральных простых чисел (I-XXI) представляют собой суть заявляемого объекта интеллектуальной собственности.

```
І. 1, 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, и т.д.
  ІІ. 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, и т.д.
  III. 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277, 307, 317, 337, и т.д.
  IV.19, 29, 59, 79, 89,109,139, 149, 179, 199, 229, 239, 269, 349, 359, 379, 389, 409, и т.д.
  Используя правила и законы Комбинаторного анализа (размещения, перестановки и
  сочетания), можно получить иные разновидности этих числовых последовательностей:
  V. 1,3,11,13,23,31,41,43,53,61,71,73,83,101,103,113,131,151,163,173,181,191,193,..и т.д.
  VI. 1,7,11,17,31,37,41,47,61,67,71,97,101,107,127,131,137,151,157,167,181,191,197,и т.д.
 VII. 1,11,19,29,31,41,59,61,71,79,89,101,109,131,139,149,151,179,181,191,199,211,...и т.д.
 VIII. 3,7,13,17,23,37,43,47,53,67,73,83,97,103,107,113,127,137,157,163,167,173,193,..и т.д.
  ІХ. 3,13,19,23,29,43,53,59,73,79,83,89,103,109,113,139,149,163,173,179,193,199,....и т.д.
  Х. 7,17,19,29,37,47,59,67,79,89,97,107,109,127,137,139,149,157,167,179,197,199...и т.д.
  ХІ. 1,3,7,11,13,17,23,31,37,41,43,47,53,61,67,71,73,83,97,101,103,107,113,127,131,...и т.д.
 ХІІ. 1,3,11,13,19,23,29,31,41,43,53,59,61,71,73,79,83,89,101,103,109,113,131,139,...и т.д.
 ХІІІ. 1,7,11,17,19,29,31,37,41,47,59,61,67,71,79,89,97,101,107,109,127,131,137,139,...и т.д.
 XIV. 3,7,13,17,19,23,29,37,43,47,53,59,67,73,79,83,89,97,103,107,109,113,127,137,...и т.д.
  В состав последовательности натуральных простых чисел как их законная и даже
  неотъемлемая часть входят натуральные простые числа - близнецы, отличительной
  особенностью которых является то, что они образуют так называемые дуплеты или
  пары, где разность образующих их чисел всегда равна двум(2): 5-7,11-13,17-19, и т.д.
   Поэтому, натуральные простые числа - близнецы не только сами по себе образуют
  самостоятельную или отличительную числовую последовательность в рамках своей
  главной последовательности натуральных простых чисел( N=1,2,3,5,7,11,13,и т.д.),но
  в своём массиве или множестве порождают иные разновидности или подмножества:
  Всевозможные производные (I-XXIV) автоматически становятся объектами данной
   интеллектуальной собственности и защищены законами России об авторских правах.
XV. 3-5, 5-7, 11-13, 17-19, 29-31, 41-43, 59-61, 71-73, 101-103, 107-109, 137-139, и т.д.
       11-13, 41-43, 71-73, 101-103, 191-193, 281-283, 311-313, 431-433, 461-463, и т.д.
XVI.
XVII.
         17-19, 107-109, 137-139, 197-199, 227-229, 347-349, 617-619, 827-829,....и т.д.
XVIII.
        29-31, 59-61, 149-151, 179-181, 239-241, 269-271, 419-421, 569-571,.....и т.д.
XIX.
          11-13, 17-19, 41-43, 71-73, 101-103, 107-109, 137-139, 191-193,..... т.д.
XX.
            11-13, 29-31, 41-43, 59-61, 71-73, 101-103, 149-151, 179-181,..... и т.д.
XXI.
          17-19, 29-31, 59-61, 107-109, 137-139, 149-151, 179-181, 197-199,.....и т.д.
```

N = 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, и т.д.

5. Области научного применения или варианта использования данного объекта.

Выявленные в бесконечной последовательности натуральных простых чисел их совершенно новые для математики --- в результате элементарной перестановки или логической рекомбинации образующих её элементов методами Комбинаторного анализа --- последовательности натуральных простых чисел и чисел - близнецов позволят учёным и специалистам в области математики разработать новые идеи и теории, найти решение сложных вопросов, связанных с такой трудной проблемой, как доказательство гипотезы Римана о тривиальности нулей ζ-функции, проникнуть в тайну очерёдности известных пророческих центурий Мишеля Нострадамуса, знаменитого французского астролога XVI в., выявить новые законы очерёдности протекания различных, но последовательных процессов, реакций и других ещё не известных математике закономерностей и их реальных возможностей для науки.

6. Сведения о промышленном применении. Нет.

7. Объём финансирования, необходимый, для практического применения.

Не просчитывался.

8. Степень завершённости объекта.

Найдена многообещающая и совершенно новая математическая идея, готовая к незамедлительному изучению и исследованию как аналитически, так и графически.

9. Публикации по теме.

1. Е.В.Карпушкин Четыре разновидности Основной числовой последовательности натуральных простых чисел.Ч.І.-Мурманск: MSM(±∞:xy&xyz)Investigators,2015.-18 с.

10. Контактные данные разработчика или адрес автора (домашний).

РОССИЯ 183014 г. Мурманск - 14 проспект Кольский, дом 105, кв. 36. д.т.: 8-(8152)-53-50-05; mob.: 8-902-282-67-87; e-mail: e.v.karpushkin@mail.ru

11. Иллюстративный материал.

Прилагаемые здесь точечно-цветокодированные графики 3-х последовательностей натуральных простых чисел являются наглядной иллюстрацией по теме данного заявляемого объекта интеллектуальной собственности. Все графики выполнены вручную в прямоугольной системе координат Декарта. Координаты всех точек определены с помощью авторской Теории пробелов, максимально упрощающей подготовительную работу, предшествующую построению любого точечного графика.

- Рис.1 Точечно двухцветный график обычной квадратичной последовательности натуральных чисел, (фрагмент). Оси координат условно не показаны.
- Рис.2 Точечно одноцветный график последовательности натуральных простых чисел, (фрагмент). Оси координат условно не показаны.
- Рис.3 Точечно одноцветный график последовательности натуральных простых чисел близнецов, (фрагмент). Оси координат условно не показаны.

Сведения об авторе по объектам интеллектуальной собственности.

1. Фамилия, имя и отчество.

Карпушкин Евгений Васильевич

2. День, месяц, год рождения.

13 ноября 1950 г.

3. Место работы, должность.

Пенсионер.

4. Какие учебные заведения окончил, год окончания.

Ленинградский технологический институт холодильной промышленности, 1986 г.

Школа научно-технических переводчиков при ЛТИХП, 1981 г.

Мурманский морской колледж им. И.И. Месяцева, 1999 г.

Северо-Западная Академия государственной службы при Президенте РФ, 2000 г.

Государственный университет г.Оулу (Финляндия), 2008 г.

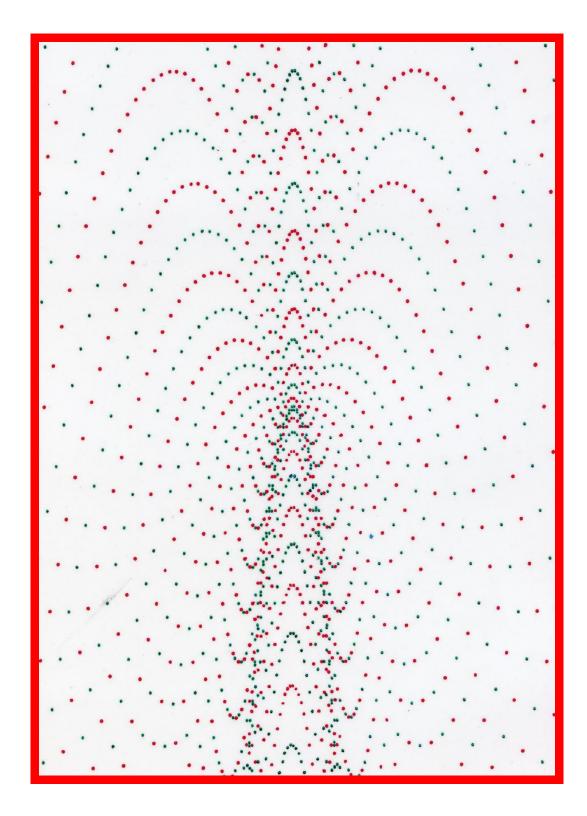


Рис.1

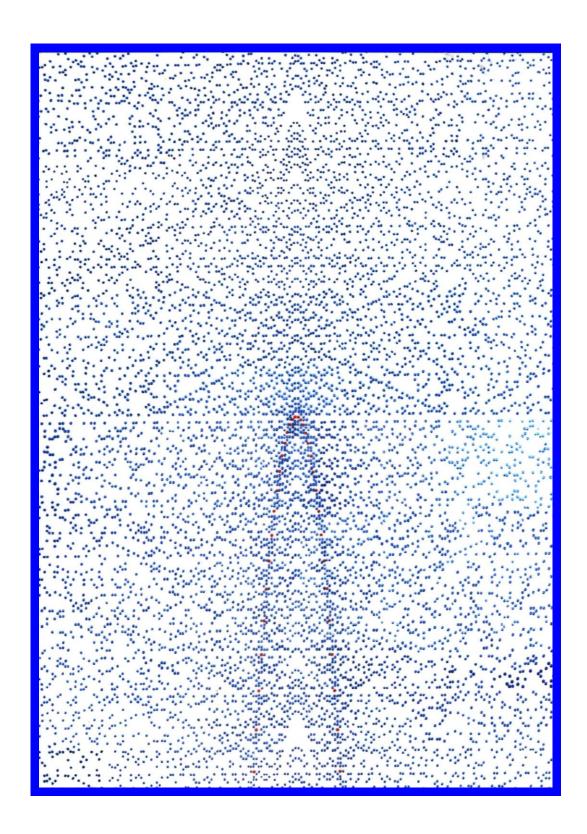


Рис. 2 (N).

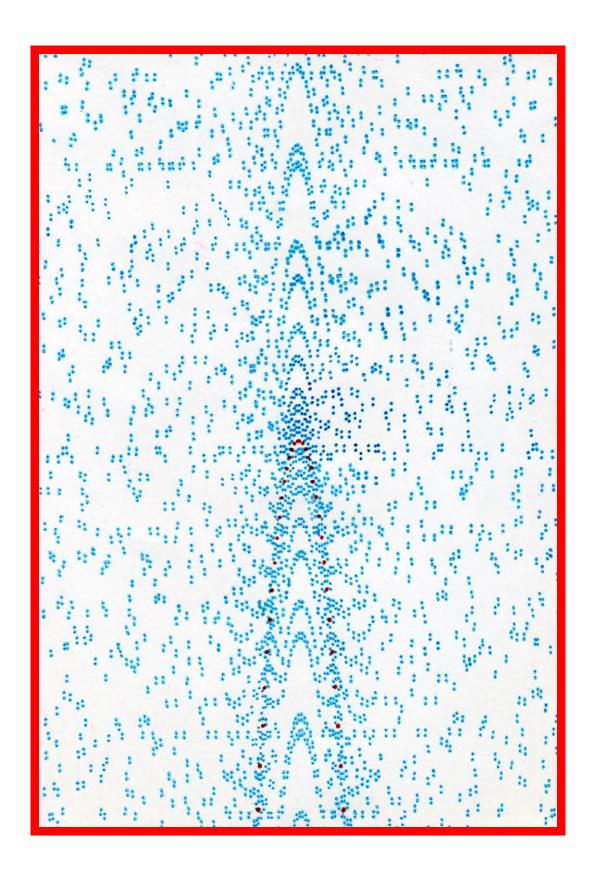


Рис. 3 (XV).

Мурманская Академия декартовой инфинитологии и евклидовых фракталов

РОССИЯ

183014 г. Мурманск

проспект Кольский, дом 105, кв. 36

Карпушкин Евгений Васильевич

дом.тел.: 8-8152-53-50-05

mob.: 8-902-282-67-87

e-mail: e.v.karpushkin@mail.ru

http.///: www.viperson.ru

Банковские Реквизиты Автора

Мурманское отделение ОАО "Сбербанк России" Дополнительный офис № 8627 / 01967.

Корреспондентский счёт банка: 3010181030000000615

БИК банка: 044705615

 Счёт получателя:
 42307810341120018005

 Получатель:
 Карпушкин Евгений Васильевич

Адрес Банка: 183014 г. Мурманск-14 проспект Кольский, дом 152А.

Реквизиты Кредитной карточки

VISA 4276 4100 1524 6515 EVGENIY KARPUSHKIN 06/16

Логотип --- эмблема Академии

Логотип для деловых бумаг и писем

МУРМАНСКАЯ АКАДЕМИЯ ДЕКАРТОВОЙ ИНФИНИТОЛОГИИ И ЕВКЛИДОВЫХ ФРАКТАЛОВ

Таблица простых чисел от 2 до 6343 (824 числа)

2-3-5-7

11-13-17-19-23-29-31-37-41-43-47-53-59-61-67-71-73-79-83-89-97

101-103-107-109-113-127-131-137-139-149-151-157-163-167-173-179-181-191-193-197-199-211-223-227-229-233-239-241-251-257-263-269-271-177-281-283-293-307-311-313-317-331-337-347-349-353-359-367-373-379-383-389-397-401-409-419-421-431-433-439-443-449-457-461-463-467-479-487-491-499-503-509-521-523-541-547-557-563-569-571-577-587-593-599-601-607-613-617-619-631-641-643-647-653-659-661-673-677-683-691-701-709-719-727-733-739-743-751-757-761-769-773-787-797-809-811-821-823-827-829-839-853-857-859-863-877-881-883-887-903-911-919-929-937-941-947-953-967-971-977-983-991-997

1009-1013-1019-1021-1031-1033-1039-1049-1051-1061-1063-1069-1087-1091-1093-1097-1229-1231-1237-1249-1259-1277-1279-1283-1289-1291-1297-1301-1303-1307-1319-1321-1327-1361-1367-1373-1381-1399-1409-1423-1427-1429-1433-1439-1447-1451-1453-1459-1471-1481-1483-1487-1489-1493-1499-1511-1523-1531-1543-1549-1553-1559-1567-1571-1579-1583-1597-1601-1607-1609-1613-1619-1621-1627-1637-1657-1663-1667-1669-1693-1697-1699-1709-1721-1723-1733-1741-1747-1753-1759-1777-1783-1787-1789-1801-1811-1823-1831-1847-1861-1867-1871-1873-1877-1879-1889-1901-1907-1913-1931-1933-1949-1951-1973-1979-1987-1993-1997-1999-2003-2011-2017-2027-2029-2039-2053-2063-2069-2081-2083-2087-2089-2099-2111-2113-2129-2131-2137-2141-2143-2153-2161-2179-2203-2207-2213-2221-2237-2239-2243-2251-2267-2269-2273-2281-2287-2293-2297-2309-2311-2333-2339-2341-2347-2351-2357-2371-2377-2381-2383-2389-2393-2399-2411-2417-2423-2437-2441-2447-2459-2467-2473-2477-2503-2521-2531-2539-2543-2549-2551-2557-2579-2591-2593-2609-2617-2621-2633-2647-2657-2659-2663-2671-2677-2683-2687-2689-2693-2699-2707-2711-2713-2719-2729-2731-2741-2749-2753-2767-2777-2789-2791-2797-2801-2803-2819-2833-2837-2843-2851-2857-2861-2879-2887-2897-2903-2909-2917-2927-2939-2953-2957-2963-2969-2971-2999-3001-3011-3019-3023-3037-3041-3049-3061-3067-3079-3083-3089-3109-3119-3121-3137-3163-3167-3169-3181-3187-3191-3203-3209-3217-3221-3229-3251-3253-3257-3259-3271-3299-3301-3307-3313-3319-3323-3329-3331-3343-3347-3359-3361-3371-3373-3389-3391-3407-3413-3433-3449-3457-3461-3463-3467-3469-3491-3499-3511-3517-3527-3529-3533-3539-3541-3547-3557-3559-3571-3581-3583-3593-3607-3613-3617-3623-3631-3637-3643-3659-3671-3673-3677-3691-3697-3701-3709-3719-3727-3733-3739-3761-3767-3769-3779-3793-3797-3803-3821-3823-3833-3847-3851-3853-3863-3877-3881-3889-3907-3911-3917-3919-3923-3929-3931-3943-3947-3967-3989-4001-4003-4007-4013-4019-4021-4027-4049-4051-4057-4073-4079-4091-4093-4099-4111-4127-4129-4133-4139-4153-4157-4159-4177-4201-4211-4217-4219-4229-4231-4241-4243-4253-4259-4261-4271-4273-4283-4289-4297-4327-4337-4339-4349-4357-4363-4373-4391-4397-4409-4421-4423-4441-4447-4451-4457-4463-4481-4483-4493-4507-4513-4517-4519-4523-4547-4549-4561-4567-4583-4591-4597-4603-4621-4637-4639-4643-4649-4651-4657-4663-4673-4679-4691-4703-4721-4723-4729-4733-4751-4759-4783-4787-4789-4793-4799-4801-4813-4817-4831-4861-4871-4877-4889-4903-4909-4919-4931-4933-4937-4943-4951-4957-4967-4969-4973-4987-4993-5003-5009-5011-5021-5023-5039-5051-5059-5077-5081-5087-5099-5101-5107-5113-5119-5147-5153-5167-5171-5179-5189-5197-5209-5227-5231-5233-5237-5261-5273-5279-5281-5297-5303-5309-5323-5333-5347-5351-5387-5393-5399-5407-5413-5417-5419-5431-5437-5441-5443-5449-5471-5477-5479-5483-5501-5503-5507-5519-5521-5527-5531-5557-5563-5569-5573-5581-5591-5623-5639-5641-5647-5651-5653-5657-5659-5669-5683-5689-5693-5701-5711-5717-5737-5741-5743-5749-5779-5783-5791-5801-5807-5813-5821-5827-5839-5843-5849-5851-5857-5861-5867-5869-5879-5881-5897-5903-5923-5927-5939-5953-5981-5987-6007-6011-6029-6037-6043-6047-6053-6067-6073-6079-6089-6091-6101-6113-6121-6131-6133-6143-6151-6163-6173-6197-6199-6203-6211-6217-6221-6229-6247-6257-6263-6269-6271-6277-6287-6299-6301-6311-6317-6323-6329-6337-6343-.

ЛИТЕРАТУРА

- 1. Абрамович М. И., Стародубцев М. Т. Математика: алгебра и элементарные функции. М.: Высшая школа, 1976. Т.1. 272 с.; Т.2. 304 с.
- 2. Айерленд К., Роузен М. Классическое введение в современную теорию чисел. М.: Мир, 1987. 416 с.
- 3. Божокин С. В., Паршин Д.А. Фракталы и мультифракталы. Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001. 128 с.
- 4. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся. М.: Наука, 1980. 986 с.
- 5. Вейль А. Основы теории чисел: / Пер. с англ. М.: Мир, 1972. 408 с.
- 6. Выгодский М.Я. Справочник по элементарной математике. М.: Наука, 1976. 336 с.
- 7. Карпушкин Е. В. Программируемый математический графопостроитель. Мурманск: MSM ($\pm \infty$: xy&xyz) Investigators, 1994. 101 с.
- Карпушкин Е. В., Леденцов А. В.
 Основы математической инфинитологии. Часть І.
 Мурманск: MSM (± ∞: xy&xyz) Investigators, 2003. 52 с.
- 9. Карпушкин Е. В. Фрагмент классического самоподобного множества евклидовой геометрической бесконечности. — Мурманск: MSM (± ∞: xy&xyz) Investigators, 2004. — 16 с.
- 10. Карпушкин Е. В.
 Фрагмент бесконечного геометрического самоподобного множества.
 Мурманск: MSM (± ∞: xy&xyz) Investigators, 2006. 17 с.
- Карпушкин Е. В.
 Новые бесконечные геометрические (евклидовы)
 фракталы и их производные.
 Мурманск: MSM (± ∞: xy&xyz) Investigators, 2008. 29 с.
- 12. Карпушкин Е.В. Математическая прямоугольно-числовая спираль Карпушкина-Леденцова или обобщённая "скатерть Улама".
 Мурманск: MSM (± ∞: xy&xyz) Investigators, 2009. 17 с.
- 13. Карпушкин Е. В. Аналоги и производные математической прямоугольно-числовой спирали Карпушкина-Леденцова или обобщённой "скатерти Улама". Мурманск: MSM (± ∞: xy&xyz) Investigators, 2009. 17 с.

- 14. Карпушкин Е. В. Численно-графические методы программирования системы координат Декарта.

 Мурманск: MSM (± ∞: xy&xyz) Investigators, 2009. 22 с.
- 15. Карпушкин Е. В. (± ∞ : XY & XYZ)! // Диалоги о науке, 2009, № 2, с. 113 117.
- 16. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров: / Пер. с англ. — М.: Наука, 1984. — 832 с.
- 17. Кудрявцев О. П., Адельсон Вельский Г. М. Дискретная математика для инженеров. М.: Энергоатомиздат, 1988. 480 с.
- 18. Лемер Д. Н. Таблицы простых чисел от 1 до 10006721:/Пер. с англ. М.: ВЦАН СССР (БМТ, вып. 43), 1967. 270 с.
- 19. Математическая энциклопедия : Гл. ред. И.М.Виноградов. М.: Энциклопедия, 1977 1984. Т.1. ÷ Т.5.:— 5904 стб.
- 20. Мандельброт Б. Фрактальная геометрия природы. М.: Институт компьютерных исследований, 2002. 656 с.
- 21. Морозов А. Д. Введение в теорию фракталов.
 Москва-Ижевск: Институт компьютерных исследований,2002. 160 с.
- 22. Пайтген Р. Красота фракталов. М.: Мир, 1989. 206 с.
- 23. Пискунов Н. С. Дифференциальное и интегральное исчисления. М.: Наука, 1978. Т.1. 456 с.; Т.2. 576 с.
- 24. Политехнический словарь: Гл. ред. А.Ю. Ишлинский. М.: Сов. энциклопедия, 1989. 669 с.
- 25. Рид М. Алгебраическая геометрия для всех: / Пер. с англ. М.: Мир, 1991. 152 с.
- 26. Рыбасенко В. Д., Рыбасенко И. Д. Элементарные функции. М.: Наука, 1987. 416 с.
- 27. Справочник по специальным функциям. Пер. с англ./ Под ред. М. Абрамовица и И. Стиган. М.: Наука, 1979. 832 с.
- 28. Таблицы Барлоу / Под ред. Л. С. Хренова. М.: Наука, 1975. 376 с.
- 29. Федер Е. Фракталы: Пер. с англ. М: Мир, 1991. 254 с.

- 30. Фильчаков П. Ф. Справочник по высшей математике. Киев: Наукова думка, 1974. 744 с.
- 31. Харди Г. Х. Курс чистой математики: Пер. с англ. Москва: Иностранная литература, 1949. 512 с.
- 32. Хинчин А. Я. Три жемчужины чисел. М.: Наука, 1979. 64 с.
- 33. Энциклопедия. КТО ЕСТЬ КТО в России. Наука. Образование. Культура. Медицина и здоровье. Выпуск 2. — Новосибирск: «МАСС МЕДИА СИБИРЬ», 2010. — 256 с.
- 34. Энциклопедия КТО ЕСТЬ КТО в России: от А до Я. Выпуск 2. Новосибирск: «МАСС МЕДИА СИБИРЬ», 2011. 256 с.
- 35. Энциклопедия успешных людей России. Юбилейный 5 том. Цуг: Who is Who, Verlag für Personenenzyklopädien AG (Швейцария), 2011. 3000 с.
- 36. Энцклопедия успешных людей России, обычная. 7- й вып. (1&2 Т.). Цуг: Who is Who, Verlag für Personenenzyklopädien AG (Швейцария), 2013. 3374 с.
- 37. Энциклопедия успешных людей России, интегрированная.7- й вып.(1&2 Т.). Цуг: Who is Who, Verlag für Personenenzyklopädien AG (Швейцария), 2013. 3374 с.

ИНТЕРНЕТ

- 1. KTO ECTЬ KTO В РОССИИ. URL: http://www.wiw-rf.ru/memberPerson/43866
- 2. POCCИЯ: ИНСТИТУТЫ ГРАЖДАНСКОГО ОБЩЕСТВА. URL: http://www.c-society.ru/main.php?ID=641076&ar2=150&ar3=40
- 3. ВЭБ-САЙТ VIP-ПЕРСОН РОССИИ. URL: http.://www.viperson.ru/ID=629164
- 4. URL: http:://www.walter-fendt.de/m14e/primes.htm и др.
- 5. URL: http:://www.arxiv.org/abs/math.NT/0003234
- 6. URL: http::///www.dtc.umn.edu/~odlyzko/zeta tables/index.html
- 7. URL: http.:///www.famous-scientists.ru

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. Александров А.Д., Нецветаев Н. Ю. Геометрия. Учебное пособие.
 М.: Наука, 1990. 672 с.
- 2 Андерсен Д. А. Дискретная математика и комбинаторика: / Пер. с англ. — М.: Издательский дом "Вильямс", 2003. — 960 с.
- 3. Аристотель. Сочинения в четырёх томах. М.: Мысль, 1978. Т.1 550 с., Т.2 688 с.
- 4. Арнольд В. И. Теория катастроф. М.: Наука, 1990. 128 с.
- 5. Ашкенази Г. И. Цвет в природе и технике. — М.: Энергия, 1974. — 88 с.
- 6. Белозёров С. Е. Пять знаменитых задач древности. Ростов: Издательство РГУ, 1975. 320 с.
- 7. Библиотечка "КВАНТ". Вып. 1 ÷ 81. — М.: Наука, 1980 ~ 1990.
- 8. Бюлер В. К. Гаусс. Биографическое исследование: / Пер. с англ. М.: Наука, 1989. 208 с.
- 9. Виленкин Н. Я. В поисках бесконечности. — М.: Наука, 1983. — 160 с.
- 10. Винер Н. Я — математик: / Пер. с англ. — М.: Наука, 1967. — 356 с.
- 11. Гарднер М. Математические досуги: / Пер. с англ. М.: ОНИКС, 1995. 496 с.
- 12. Гарднер М. Путешествие во времени: / Пер. с англ. М.: Мир. 1990. 342 с.
- 13. Декарт Р. Размышление о методе. М.: Наука, 1972. 256 с.
- 14. Дербишир Дж. Простая одержимость: Бернхард Риман и величайшая нерешённая проблема в математике / Джон Дербишир; пер. с англ. А.Семихатова. М.: Астрель: CORPUS, 2010. 463 с.

- 15. Дьюдни А. К. Получение изображений самых сложных математических объектов с помощью компьютера микроскопа.

 // В мире науки, 1985, № 10, с. 80 87.
- 16. Евграфов М. А. и др. Сборник задач по теории аналитических функций. М.: Наука, 1969. 388 с.
- 17. Евклид. Начала. — М.: Мысль, 1981. — 270 с.
- 18. Жвирблис В. И.
 Рассказ о бесконечности, сочинённый на берегу тёплого моря.
 // Техника молодёжи, 1986, № 6, с. 38 41.
- 19. Жуков А. В. О числе π. М.: М Ц Н М О, 2002. 32 с.
- 20. Знакомьтесь: компьютер: / Пер. с англ. М.: Мир, 1989. 240 с.
- 21. Исаак Ньютон Математические начала натуральной философии: Пер. с лат. / Под ред. и с предисл. Л.С.Полака. Изд. 3-е. М.: Издательство Л К И, 2008. 704 с. (Классики науки.)
- 22. Кантор Г. Труды по теории множеств: / Пер. с нем. М.: Наука, 1985. 432 с.
- 23. Клайн М. Математика. Поиск истины. / Пер. с англ. М.: Мир, 1988. 296 с.
- 24. Компьютер обретает разум: / Пер. с англ. М.: Мир, 1990. 240 с.
- 25. Котов Ю. В. Как рисует машина. — М.: Наука, 1988. — 224 с.
- 26. Кроновер Р. М. Фракталы и хаос в динамических системах: / Пер. с англ. М.: Постмаркер, 2000. 252 с.
- 27. Кудрявцев Л. Д. Курс математического анализа для ВУЗов. — М.: Высшая школа, 1988. Т.1 — 712 с., Т.2 — 576 с. — М.: Высшая школа, 1989. Т.3 — 352 с.
- 28. Курант Р., Роббинс Г. Что такое математика ? / Пер. с англ. — М.: М Ц М Н О, 2001. — 568 с.

- 29. Левитин К. Геометрическая рапсодия. М.: Знание, 1984. 176 с.
- 30. Леонтьев В. П. Новейшая энциклопедия персонального компьютера 2003. М.: ОЛМА-ПРЕСС, 2003. 920 с.
- 31. Мандельброт Б. В. Фрактальная геометрия природы. — М.: Знание, 1996. — 288 с.
- 32. Милнор Дж. Голоморфная динамика. Ижевск: Регулярная и хаотическая динамика, 2000. 320 с.
- 33. Мышкис А. Д. Математика для втузов специальные курсы. М.: Наука, 1971. 632 с.
- 34. Нейман Л. С. Радость открытия. М.: Д.л., 1972. 176 с.
- 35. Ноден П., Китте К. Алгебраическая алгоритмика: / Пер. с франц. — М.: Мир, 1999. — 720 с. илл.
- 36. Платон. Диалоги. — М.: Мысль, 1986. — 607 с.
- 37. Прахар К. Распределение простых чисел: / Пер. с нем. М.: Мир, 1967. 512 с.
- 38. Полищук В. Открытие. // Шаги, 1986, Вып. 11, с. 264 277.
- 39. Потёмкин В. Г. Система инженерных и научных расчётов MATLAB 5.x: В 2-х т.: Т. 1 М.: ДИАЛОГ МИФИ, 1999. 366 с.; Т. 2 М.: ДИАЛОГ МИФИ, 1999. 304 с.
- 40. Пчёлкин Б. К. Специальные разделы высшей математики. — М.: Высшая школа, 1973. — 464 с.
- 41. Садовничий В. А., Григорьян А. А., Конягин С. В. Задачи студенческих математических олимпиад.
 М.: Издательство М Г У, 1987. 310 с.
- 42. Старков С. Н. Справочник по математическим формулам и графикам функций. СПб.: Питер, 2010. 235 с.: ил. (Серия "Учебное пособие").

- 43. Улам С. М. Приключения математика: / Пер. с англ. Ижевск: Регулярная и хаотическая динамика, 2001. 272 с.
- 44. Фихтенгольц Г. М. Курс интегрального и дифференциального исчисления. СПб: Лань, 1997. Т.1.— 608 с.,Т.2.— 800 с.,Т.3.— 672 с.
- 45. Фоменко А. С., Герценштейн М. П.
 Бесконечность в математике... и в физике.
 // Техника молодёжи, 1986, № 6, с. 42 43.
- 46. Фоменко А. С.
 Когда математики мыслят образами.
 // Чудеса и приключения, 1992, № 4 5, с. 44 49.
- 47. Шабат Б. В. Введение в комплексный анализ. М.: Наука, 1969. 576 с.
- 48. Юргенс X. Язык фракталов.

 // В мире науки, 1990, № 10, с. 80 87.
- 49. Encyclopedia "2000 outstanding intellectuals of the 21-st century".

 Cambridge: IBC, 2012. 200 p.p.
- 50. Robert A. Adams
 Calculus: a complete course. 6 th edition.
 Toronto: Pearson Addison Wesley Education Canada, 2006. 1044 p.p.
- Student A. Adams
 Calculus: a complete course. Student solutions manual. 6 th edition.
 Toronto: Pearson Addison Wesley Education Canada, 2006. 350 p.p.
- 52. Kreyszig Erwin
 Advanced engineering mathematics / Erwin Kreyszig. 9 th edition.
 Singapore: Wesley International edition, 2006. 1256 p.p.
- Freedman R. A. Young H. D.
 Sears and Zemansky's University physics with modern physics.
 Toronto: Pearson Addison Wesley Education Canada, 2006.
 1632 p.p.
- 54. Clayden, Greeves, Warren and Wothers
 Organic chemistry.
 N.Y.: Oxford University Press, 2008. 1536 p.p.
- 55. Shriver & Atkins
 Inorganic chemistry. 4-th edition.
 N.Y.: Oxford University Press, 2006. 850 p.p.
- 56. Hart / Craine / Hart / Hadad
 Organic chemistry. A short course. 12 th edition.
 N.Y.: Houghton Mifflin Company, 2007. 612 p.p.