деятельности классного руководителя шестого «Б» класса эмоционально-методичный (классный руководитель психолог по образованию). Психологическую атмосферу в классе определяли по данным визуально-аналоговой шкалы: вражда-дружба, жадностьщедрость, лживость-правдивость, агрессивность-спокойствие, злость-доброта, зависть-искренность, грубость-вежливость. Детей просили оценить атмосферу в классе по каждому качеству по 10-балльной системе. Психологическая атмосфера в шестом «Б» классе была (р <0,05) добрее и спокойнее.

Заключение. Из анализа результатов проведенной работы можно заключить, что в формировании низкой резистентности и хронической патологии у подростков важна роль и иммунных, и психо эмониональных нарушений, поэтому при составлении оздоровительных программ у подростков обязательно необходимо включать мероприятия, нормализующие и иммунный, и психологический статус, то есть подход к оздоровлению должен быть комплексным и это должно стать делом общегосударственным, а не только делом медицинских работников. Оздоровление детей и подростков нужно начать с полноценных бесплатных завтраков в школах для всех детей без исключения из качественных и полезных продуктов, с соблюдением всех санитарных норм их приготовления, доставки и потребления (одноразовые пищевые контейнеры, своевременная и правильная обработка рук и т.д.), с борьбы с гиподинамией, с приближения санаторно-курортного восстановительного лечения к детям, создавать «группы переболевших» в школах, создать условия для проведения восстановительного печения в школах

Литература

- 1. Баранов А.А. // Врач. 1997. № 8. С. 28–30.
- 2. *Михайленко А.А. и др.* Вторичные иммунодефициты и иммунная недостаточность у детей, методы коррекции, роль и место квантовой терапии. Тверь М. 2001. 120 с.
- 3. *Федотова Т.А., Когут И.Ф.* // Тез. Докл. 4-й мед. ассамблеи союза городов Заполярья и Крайнего Севера // Губернская медицина. – Тверь, 2002. – С.13.
- 4. Абрамов В.В. Взаимодействие иммунной и нервной систем.- Новосибирск: Наука, 1988.- 163 с.

УДК 536.7: 539.86 61: 534.1:577.3: 517.501: 615

КОМПЬЮТЕРНЫЙ АНАЛИЗ В ТРФ-ТОПОГРАФИИ ДЛЯ ДИФФЕРЕН-ЦИАЦИИ И ЛОКАЛИЗАЦИИ ОЧАГОВ ПАТОЛОГИИ В МАММОЛО-ГИИ И ПУЛЬМОНОЛОГИИ

А.В. БЛАГОДАРОВ, С.В. ВЛАСКИН, М.С. ГРОМОВ * , С.А. ДУБОВИЦКИЙ, А.Н. МЕЛЬНИКОВ ** , Е.Б.НИКИТИНА * , В.К.ПАРФЕНЮК ** , В.И. ПЕТРОСЯН ** , В.Н.ПЛОХОВ *** , И.В. ТЕРЕХОВ *

Радиофизические основы транс-резонансной функциональной топографии (ТРФ). Для своевременного выявления заболеваний и построения рациональной тактики лечения требуется активное привлечение в клинику новых, высоко информативных методов исследований, базирующихся на последних достижениях науки и позволяющих вывести диагностику заболеваний на качественно новый уровень. Одним из таких методов, базирующихся на современных открытиях в области радиоволновых технологий, является разработанный метод (ТРФ-топографии) [1]. В основе этого принципиально нового диагностикотерапевтического метода лежит явление резонансно-волнового состояния молекулярной системы живого организма [2-7]. Резонансно-волновое состояние заключается в синхронном колебательном движении молекулярных фрагментов водной компоненты, составляющей 70...80% массы организма, и генерации ими сверхслабых радиоволн на строго определенных, резонансных частотах миллиметрового и дециметрового диапазонов длин волн. Для биотканей в норме это - радиоизлучения в полосах частотой вблизи 50-52 ГГц, 65 ГГц. 100 ГГц, 130 ГГц, 150 ГГц, 1 ГГи и лр., которым соответствуют длины волн ~6 мм. 4.6 мм. 3 мм, 2,3 мм, 2 мм и 3 дм (имеются и др. резонансные длины волн). Мощность резонансного радиоизлучения чрезвычайно мала и на-

ходится на уровне $\sim 10^{-17} - 10^{-15} \text{ BT/cm}^2$. Это собственные, естественные волны здорового организма. Резонансные радиоволны являются обусловлены активностью метаболических процессов [8-10]. Наполняя все органы и системы, они выполняют внутреннюю информационно-корректирующую функцию в физиологическом состоянии организма. С прекращением жизни резонансные волны затухают, и остаются лишь тепловые (хаотические) фоновые колебания [11]. В резонансно-волновых процессах реализуется биофизический механизм гомеостаза.

Метод ТРФ-топографии. Разработаны два способа диагностики: амплитудно-резонансный и спектрально-резонансный. Вв обоих вариантах обследование ведется по классическим анатомо-топографическим областям, чем и объясняется название метода – топография, а аппарата – топограф. В данном сообщении используется амплитудно-резонансный способ.

Амплитудно-резонансный способ заключается в снятии приемной антенной с заданной топографической области уровня радиосигнала на резонансной частоте 1 ГГц (длина волны λ =30 см), стимулированного зондирующим резонансным радиоизлучением на естественной для организма частоте 65 ГГц (длина волны λ=4,6 мм). Возможно использование и других резонансных частот. В качестве физиологически значимого параметра используется отклонение интенсивности принимаемого радиосигнала от коридора нормы, определяемого метрологически и по контрольной группе. Метод реализован в программно-аппаратном комплексе – ТРФ-топографе. Впервые в диагностике патологических состояний человека в качестве диагностической информации используются параметры резонансно-волнового состояния биоткани, а именно, амплитуда принимаемых резонансных волн (радиоотклика) в диапазоне 1 ГГц при зондировании исследуемой области радиоволнами на частоте 65 ГГц (ТР-показатель). Данный показатель отражает интенсивность происходящих процессов клеточного метаболизма в обследуемой топографической области. Это – отличие от применяемых в настоящее время методов инструментальной диагностики, где используется информация о состоянии «вещественной» компоненты биосреды - морфологический подход. Для этого метода диагностики характерна безвредность в связи с низко-интенсивным воздействием естественными для организма радиоволнами КВЧ- и СВЧ-диапазона. Метод является представителем нового направления в медицине информационно-волновой мелицины. При первичной апробации метода в клиниках Саратовского государственного медицинского университета и Саратовского Военно-медицинского института были получены результаты, свидетельствующие о чувствительности метода к воспалительным, дистрофическим и неопластическим процессам в организме человека.

Цель исследования - изучение диагностических возможностей метода было направлено на разработку компьютерных методов обработки данных для дифференциации новообразований молочной железы, локализации и распространенности воспалительных изменений у пациентов с острой пневмонией. Обслелование пациентов проволилось в положении силя. В соответствии со схемой регистрации сигнала датчик устанавливался на выбранную область и в течение 5 с регистрировался уровень радиосигнала в каждой области. Для обработки принимаемого радиосигнала использовались статистические методы, реализованные в пакете Statistika [12]. Оценивалось арифметическое среднее, ошибка среднего, среднеквадратичное отклонение, 95% доверительный интервал средних значений в изучаемых группах. Различие средних в группах оценивалось с помощью однофакторного дисперсионного анализа. С целью получения формализованных критериев диагностики (решающих правил) применялись методы математического моделирования (логистическая регрессия и дискриминантный анализ).

Цель первого направления исследований - показ возможностей первичной и дифференциальной диагностики новообразований молочных желез. При этом в задачу входило получение надежных решающих диагностических правил. Исследование проводилось пациенткам, добровольно согласившимся на него, параллельно с выполнением плановых диагностических процедур. Результаты регистрации ТР показателя разделены на четыре группы: доброкачественные новообразования, злокачественные новообразования, злокачественные новообразования после химио- и лучевой терапии (врачебное вмешательство), контроль. Всего исследование проведено 110 пациенткам. Результаты обследования заносились в электронную таблицу в виде строк и

^{**}Саратовский Военно-медицинский институт **Компания «Проект «Новые технологии» (Р. N. Т.) Клиническая больница Приволжской железной дороги

А.В.Благодаров, С.В. Власкин, М.С.Громов и др.

столбцов, строки состояли из случаев, т.е. результатов обследования по 16 точкам (по квадрантам и лимфоузлам каждой груди). Для различения пациентов по нозологии и локализации патологического процесса использовались группирующие переменные.

Результаты исследования. В табл. 1 представлены характеристики ТР-показателя, полученного в зоне обследования молочной железы с диагностированным патологическим процессом. В уровнях ТР-показателя соответствующих зон молочной железы, охваченных разными патологическими процессами, обнаруживаются различия, что закономерно в свете представлений о физиологическом происхождении резонансного отклика (ТРпоказателя). Так как в нашем исследовании регистрация ТРпоказателя с поверхности молочной железы производилась с 16 точек по схеме, учитывающей анатомическое строение железы и пути регионарного лимфооттока. Матрица наблюдений представляла собой 16-мерное пространство, сложное для визуализации и выявления закономерности распределения уровня изучаемого показателя по проекции органа. Для решения проблемы визуализации полученных данных и понижения размерности обрабатываемого массива наблюдений применены процедуры дискриминантного анализа, реализованные в ППП «Statistika». Дискриминантный анализ, предназначенный для решения задач классификации и распознавания образов, основан на линеаризации переменных, связывая их линейной регрессией [12].

Таблица 1

Характеристика уровня ТР показателя в группах

Обследуе- мые	Локализация	X	±σ	±m	95% доверительный интервал средних
20	Контроль	105,5	5,2	1,16	95-112
25	Доброкачественные новообразования	85	6,5	1,3	82-88
30	Злокачественные об- разования	122,5	7,3	1,4	118,5-126,5
17	Злокачественные новообразования после лечения	118,5	10,3	2,5	113,5-123,5
8	Непальпируемые опухоли	122	6,7	3	116-128

x – среднее арифметическое; $\pm \sigma$ – среднеквадратичное отклонение; $\pm m$ – ошибка среднего, коридор нормы TP показателя 95–115 единиц

При решении задачи классификации происходит минимизация внутригрупповой и максимизации межгрупповой дисперсии подбором коэффициентов в линейной регрессионной формуле. В качестве классифицирующих правил используются коэффициенты, рассчитанные в процессе решения системы линейных уравнений для каждой группы:

$$y_{1} = \sum_{i} K_{i}^{*} x_{i} + b_{1}$$

$$y_{1} = \sum_{i} K_{i}^{**} x_{i} + b_{2}$$

$$y_{2} = \sum_{i} K_{i}^{**} x_{i} + b_{1}$$

$$y_{2} = \sum_{i} K_{i}^{**} x_{i} + b_{2}$$

$$y_{3} = \sum_{i} K_{i}^{***} x_{i} + b_{3}$$

$$y_{4} = \sum_{i} K_{i}^{***} x_{i} + b_{3}$$

$$y_{5} = \sum_{i} K_{i}^{***} x_{i} + b_{1}$$

$$y_{6} = \sum_{i} K_{i}^{***} x_{i} + b_{2}$$

$$y_{7} = \sum_{i} K_{i}^{***} x_{i} + b_{3}$$

$$y_{8} = \sum_{i} K_{i}^{***} x_{i} + b_{2}$$

$$y_{8} = \sum_{i} K_{i}^{***} x_{i} + b_{3}$$

$$y_{8} = \sum_{i} K_{i}^{***} x_{i} + b_{3}$$

В данных формулах y — группировочная переменная классифицируемой группы (принимает целые неотрицательные значения), x_i — i-i-i регистрируемый показатель. Коэффициенты K и b оцениваются в процессе решения системы. Нами были использованы следующие значения параметра y: для контроля y=1, для рака y=2, для доброкачественных новообразований y=3, для новообразований после вмешательства y=4. С целью решения вопроса применимости линейных методов моделирования проверялась гипотеза о нормальности распределения результатов исследования. Для проверки нормальности распределения использовался предложенный в ГОСТ 8.307-76 составной критерий (для числа наблюдений в группе n<50). На уровне значимости 0,2 результаты наблюдения считаем нормально распределенными. Для визуа-

лизации данных в процессе исследования была использована процедура канонического анализа с получением канонических линейных дискриминантных функций (КЛДФ), образующих координатную плоскость, на которой нанесены координаты наблюдений. Так решается проблема понижения размерности (до двух) и облегчается работа по интерпретации полученных данных.

Представлены три группы наблюдений: доброкачественные новообразования (красные прямоугольники в левой зоне), злокачественные новообразования (синие ромбы в верхней правой зоне), злокачественные новообразования после неинвазивного лечения - химиотерапия, лучевая терапия, комбинированное лечение (зеленые ромбы в правой нижней зоне). Первые две группы представляют собой относительно однородные группы с «компактным расположением» наблюдений вокруг соответствующих центроидов (с минимальной дистанцией), тогда как третья группа (врачебное вмешательство) характеризуется значительными разбросами наблюдений относительно соответствующего центроида (внутригрупповая дисперсия приближается к межгрупповой). Полученное распределение наблюдений по координатной плоскости может говорить о разной эффективности терапии. Оценка корректности и информативности такого разделения проводится по значению статистики хи-квадрат. Ее значения приведены в табл. 2. При рассмотрении положения объектов трех основных изучаемых групп (контроль, доброкачественные новообразования и злокачественные новообразования) в координатах первой и второй КЛДФ ясно, что группы обнаруживают четкое сосредоточение вокруг соответствующего центроида, с одной стороны, и значительное удаление друг от друга, с другой, показывая наличие принципиальных различий в распределении уровня ТРпоказателя у больного и здорового человека.

Таблица 2 Оценка информативности процедуры канонического анализа

№ КЛДФ	Канонический коэффициент корреляции	Wilks' λ	X^2	Ст. своб.	Уровень значимости
1	0,986885	0,004888	103,7590	64	0,001228
2	0,901343	0,187581	32,6341	31	0,038650

Также приведенная картина позволяет предположить соответствующее различие в распределении уровня ТР показателя при доброкачественных и злокачественных новообразованиях.

Заболевание (как и состояние здоровья) – индивидуальное состояние, которое является неповторимым и у каждого человека имеет свои особенности течения, развития, прогноза. Однако среди этого «индивидуализма» можно выделить характерные черты, позволяющие объединить сходные состояния на основании решающих признаков в самостоятельную нозологическую единицу (диагноз). Поэтому наблюдается тенденция к группировке наблюдений вокруг центроида «рак» или «доброкачественное новообразование» на приведенном графике. Что касается группы пациентов, подвергшихся вмешательству (терапии), то здесь ситуация иная. Любое целенаправленное вмешательство в какую-либо систему изменяет ее первоначальное состояние. Так как проводимое вмешательство характеризуется разной эффективностью, в силу различных обстоятельств (реакция опухоли, характер терапии и пр.), то наблюдаемая картина носит вполне логичный характер. Нужно заметить, что диагностическая задача является задачей распознавания образов, где в качестве образа выступает патологический процесс, локализующийся в молочной железе, а в качестве «характеристики» образа используется распределение амплитуды ТР-показателя по областям молочной железы. Для решения такого рода задач можно использовать статистические методы (дискриминантный анализ).

Дискриминантный анализ – метод, который давно применяется в решении подобного класса задач во многих областях науки. Чтобы с его помощью было возможно корректное решение не только прямой задачи распознавания образов (классификация наблюдений), но и обратной (распознавание ранее неизвестного объекта), необходимо соблюдение некоторых условий. Вопервых, в основе дискриминантного анализа лежит предположение о нормальности распределения результатов исследования, или если еще шире – нормальности как природе присущей генеральной совокупности. Во-вторых, необходимо иметь оптимальную выборку (объем наблюдений), с максимальным охватом,

А.В.Благодаров, С.В. Власкин, М.С.Громов и др.

всей совокупности вариации признака. В-третьих переменные, включаемые в молель должны быть независимы, в случае высокой корреляции между ними необходимо применение специальных методик для устранения зависимостей между переменными. Если набор достаточного количества наблюдений, в принципе, возможен, то характер распределения признака - это «генетическое» свойство признака. Существенное отклонение распределения результатов исследования от нормального влечет за собой несостоятельность алгоритмов получения решающих правил диагностики, так как используемое распределение в дискриминантном анализе (F-распределение Фишера - частный случай нормального распределения) хотя и устойчиво к небольшим отклонениям в нормальности распределения, но в случае неопределенного или неизвестного распределения следует отдать предпочтение непараметрическим методам, в частности, применить нейросетевое моделирование. Применяя статистические методы, можно получить решение задачи классификации, а на основе полученных решающих правил может быть решена обратная задача диагностика патологического состояния.

Цель второго направления исследований – возможность определения локализации патологического процесса. В данном

Оценка чувствительности по решающим правилам объектов обучающей информации (локализуемый сегмент) в классификационной матрице

Сегмент	%	G 1:1	G 2:4	G 3:5	G 4:6	G 5:7	G 6:8	G 7:9
G_1:1	100,0000	4	0		0	0		0
G_2:4	100,0000	0	28		0	0		0
G_3:5	100,0000	0	0	6	0	0		0
G_4:6	100,0000	0	0		4	0		0
G_5:7	100,0000	0	0		0	8		0
G_6:8	100,0000	0	0		0	0	5	0
G_7:9	96,2963	0	1		0	0		26
Total	98,7805	4	29	6	4	8	5	26

направлении проводятся исследования по локализации воспалительного процесса в диагностике очаговых пневмоний. Основу данного исследования составляет анализ результатов обследования 147 пациентов с воспалительными заболеваниями легких (острые очаговые пневмонии и острые бронхиты) в возрасте от 18 до 27 лет методом ТРФ-топографии. Контрольную группу составили 36 добровольцев - слушателей Военно-медицинского института, обследованных в процессе прохождения углубленного медицинского обследования. В исследование включались пациенты с верифицированными диагнозами острой пневмонии и острого бронхита. Контроль диагностики метода ТРФ-топографии осуществлялся при параллельном использовании данных объективного обследования, лабораторных методов диагностики, рентгенологического исследования. Обследование включало регистрацию ТР-показателя в 40 точках по передней, задней и боковой поверхностям грудной клетки.

Исследование проводилось в положении обследуемого сидя в состоянии спокойного бодрствования. Путём сканирования модулем по заданным точкам на поверхности тела снимаются уровни радиосигналов и составляется топографическая картина распределения уровней изучаемого сигнала по области грудной клетки. С целью решения вопроса о локализации патологического процесса у пациентов с очаговой пневмонией так же были использованы методы математического моделирования, в частности, был применен дискриминантный анализ. Однако особенностью применения дискриминантного анализа в данном случае является то, что классификация состояний осуществляется с помощью линейных классификационных правил. Дело в том, что воспалительный процесс, которым охвачен сегмент легкого, не имеет резких границ. Воспалительные изменения в той или иной степени наблюдаются в смежных сегментах как реактивное проявление воспаления, или как воспаление с собственным этиологическим фактором, вследствие чего четкого визуального разделения в координатах канонических функций не может быть получено. Для решения данной задачи применена линейная дискриминационная функция. Классификация с помощью линейных дискриминационных функций осуществляется таким образом, что искомым сегментом будет тот, для которого значение ЛДФ будет максимальным. Результаты классификации по сегменту легкого, вовлеченного в воспаление, с помощью дискриминантного анализа представлены в табл. 3. По большинству сегментов, включенных в обучающую матрицу, имеет место безошибочная их классификация в соответствующую группу.

Динамика клиники лечения. Помимо диагностических возможностей метод позволяет оперативно отследить динамику патологического процесса, что демонстрируется на примере воспалительного процесса в легких (острая пневмония) на примере типичного течения правосторонней очаговой нижнедолевой пневмонии (S-9) у пациента Г. Начало лечения характеризовался большим размахом колебаний ТР-показателя, выходящим за границы «коридора нормы», характеризовавшегося коротким периодом этих колебаний. По мере выздоровления период колебаний растет, его амплитуда уменьшается, и к моменту выписки (в среднем 21-й день) колебания его уже происходят в границах «коридора нормы» (95-115 ТР-единиц). К моменту выписки из стационара (21 сутки) у большинства обследуемых амплитуда ТР-показателя, хотя и уменьшилась по сравнению с первыми сутками, но все еще превышала таковую в группе контроля (95-115 ТР-единиц). Факт говорит о том, что, несмотря на нормализацию клинико-лабораторных показателей, подкрепленную рентгенологическим исследованием, которое подтверждает разрешение

ца 3 пневмонии, в легочной ткани не завершен процесс восстановления после заболевания.

Выводы. Разработан метод компьютерного анализа диагностических данных в ТРФ-топографии с применением математической статистики. В качестве формализованных критериев диагностики могут быть использованы канонические линейные дискриминантные функции и линейные классификационные функции для установления характера патологии и локализации патологического процесса по данным ТРФ-топографии. Клинически обоснована возможность дифференциации и определения локализации патологических очагов в маммологии и пульмонологии методом компьютерного анализа диагностических данных. Продемонстрирована возможность оперативно отслеживать динамику клиники лечения, и отмече-

на тенденция к «нормализации» уровня ТР-показателя на фоне терапии. Чувствительность ТРФ-топографии к метаболическим процессам позволяет вносить коррективы в заключение о нормализации функционирования организма по клинико-лабораторным и инструментальным показателям, подтверждающим разрешение заболевания, которые, по данным ТРФ-диагностики, не всегда свидетельствуют о завершении процесса восстановления после перенесенного заболевания. Эта особенность метода может быть с успехом использована в клинической медицине, так как встречаются трудности как в объективной оценке разрешения патологического процесса и адекватности проводимого лечения, так и в прогнозе возможных осложнений заболевания.

Литература

- 1. Петросян В.И. и др. // ММ-волны в биологии и медицине.— 2003.— №1 (29).
- 2. Петросян В.И. и др. // Радиотехника и электроника.— 1995.— Т. 40, вып. 1.
- 3. *Петросян В.И. и др.* // Биомед. радиоэлектроника.—1996.—№3.
- 4. *Петросян В.И. и др.* // Биомед. радиоэлектроника.— 2001, N25—6.
- 5. *Синицын Н.И. и др.* // Биомед. радиоэлектроника.— 1998.— N01
 - 6. Синицын Н И. и др.// Радиотехника. 2000. №8.
 - 7. Sinitsyn N.I. et al. // Biomed. Engineering. 2000. Vol. 28.
- 8. *Майбородин А.В. и др. //* Биомедицинские технологии и радиоэлектроника.— 2004.— N28.
- 9. *Петросян В.И. и др. //* Биомедицинские технологии и радиоэлектроника. 2004. №8.
- 10. Петросян В.И., и др. // Биомедицинские технологии и микроэлектроника.— 2004.— №8.
- 11. *Шуб Г.М. и др.* // Биомедицинская радиоэлектроника.– 2000.– №2.
- 12. *Боровиков В.П., Боровиков И.П.* Statistica. Статистический анализ и обработка данных в среде Windows.– М.: Филинъ, 1997.

.

Краткое сообщение

THE COMPUTER ANALYSIS IN TRF-TOPOGRAPHY FOR DIFFEREN-TIATIONS AND LOCALIZATIONS OF THE CENTERS OF A PATHOLOGY

A.V. BLAGODAROV, S.V. VLASKIN, M.S. GROMOV, S.A. DUBOVICKIY, A.N. MELNIKOV, E.B. NIKITINA, V.I. PETROSYAN , V.N.PLOCHOV, I.V. TERECHOV

Summary

The method of computer processing of the diagnostic data in essentially new not loading resonance-wave method of diagnostics - TRF topography is developed. As the formalized criteria of diagnostics initial linear discriminantal functions and linear classification functions for an establishment of character of a pathology and localization of pathological process on data TRF of topography are used.

Key words: discriminantal functions, diagnostic data

УЛК 681.5-056.23

ТЕХНОЛОГИЯ АВТОМАТИЗИРОВАННОЙ ОЦЕНКИ ДИНАМИКИ ФИЗИЧЕСКОГО И ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ОРГАНИЗМА ЧЕЛОВЕКА

К.В. ГАВРИКОВ, В.Б. МАНДРИКОВ, А.Л. ШКЛЯР *

Разработка и использование систем получения необходимых сведений об объекте и преобразования их в практически полезную информацию являются одной из задач современного мониторинга, т.к. только с помощью современных методов сбора и обработки информации возможно принятие научно обоснованных управленческих решений. Анализ информации связан со значительными трудностями, а сама информация отличается неоднородностью и неоднозначностью. Появилась необходимость создания новых медико-диагностических технологий, в которых обеспечивались связывание графических объектов с информацией в базах данных; визуализация информационных массивов в виде карт, графиков, таблиц; объединение данных, получаемых из разных информационных источников; взаимодействие с другими информационными системами и технологиями [1].

Работа по выявлению отклонений показателей физического и функционального состояния человека от должных величин ведется многими авторами [2]. Созданы системы автоматизированной обработки исследуемых параметров при различных условиях жизнедеятельности человека [3, 6–7]. Большое внимание уделяется оценке интегральных функций организма, анализу его состояний и диагностике различных вариантов при выполнении дозированных психофизических тестовых заданий. Из подобных систем наиболее широко известны «Навигатор здоровья», «Паспорт физического здоровья» Института медикобиологических проблем РАН и ряд других [6–7].

Однако большинство из известных исследований [4] не уделяет должного внимания разработке технологий автоматизированной оценки функционального состояния человека в динамике, которые бы актуализировались на создании нормативных значений с учетом особенностей его конституции.

Цель работы — создание технологии многофакторной диагностики и анализа физического и функционального состояния организма человека с учетом его пола, возраста, соматотипа в динамике лет наблюдения. Способ реализации предлагаемой технологии объединяет три этапа.

1. Сбор первичной информации осуществлялся в результате скрининга постоянной группы студентов (764 чел.) по разработанному многокомпонентному тесту контроля ежегодно, на протяжении обучения в вузе. Комплекс предусматривал ежегодную регистрацию ряда показателей функционального состояния сердечно-сосудистой (ЧСС, САД, ДАД, ПД), респираторной (ЖЕЛ, проба Генчи), нервно-мышечной (бет 100 м, силовой норматив, статическая выносливость, прыжок в длину с места, гибкость и др.) систем, а также показателей физического развития (рост, масса тела, окружности грудной клетки, толщина кожной

складки и др.), что позволило провести всестороннюю оценку состояния здоровья обследуемых. Применение ряда показателей одного и того же качества позволяло подтвердить/опровергнуть результаты интегративного анализа, а также уровень информационной значимости каждого показателя. Полученные данные автоматизированным способом сортировались в зависимости от соматотипа обследуемых, как фактора, предопределяющего развитие физических и функциональных способностей [5].

2. Создание центильных таблиц-стандартов. Применение специализированного программного обеспечения и ряда статистико-математических методов позволило создать стандарты физического развития и функционального состояния на основе центильного анализа, с построением таблиц распределений показателей функционального состояния и физического развития, имеющих достоверную динамику сдвигов (p<0,05) на различных временных интервалах наблюдения (табл.).

Таблица

Таблица центильной оценки физического развития и функционального состояния студентов-девушек 1 года наблюдения

Центильный кори-	3	10	25	50	75	90	97
дор							
Показатель	I	II	III	IV	V	VI	VII
Рост, см	154	158	163	167	170	174	177
Масса тела, кг	43	47	50	54	58	62	64
Окружность грудной клетки в покое, см	74	76	78	81	83	85	86
Окружность грудной клетки на вдо- хе, см	79	81	84	86	89	91	93
Окружность грудной клетки на выдохе, см	72	74	76	79	81	83	85
Экскурсия грудной клетки, см	4	5	6	7	9	10	12
Толщина кожной складки, мм	6,5	8	9	10	12	15	16
Сила правой руки, кг	18	20	24	28	33	36	40
Сила левой руки, кг	16	20	23	26	30	35	37
Становая сила, кг	35	45	50	60	75	82	89
Гибкость, см	5	8	12	16	20	23	26
10 хлопков, с	7,6	7,1	6,8	6,4	6,0	5,8	5,4
Прыжок в длину с места, см	148	155	165	175	188	193	202
Челночный бег, с	26,4	26,0	25,2	24,4	23,8	23,0	22,0
Силовой норма- тив, ед	30	34	39	43	47	52	55
Бег 100 м, с	19,2	18,7	17,9	17,0	16,4	15,8	15,3
Бег 2 км, мин	13,0	11,5	11,0	8,0	6,7	6,4	6,0

Как известно, центили делят область возможных изменений вариант в вариационном ряду на определенные интервалы. В практике наиболее часто используются следующие центили: $V_{0.5}$ – медиана; $V_{0.25}$, $V_{0.5}$, $V_{0.75}$ – квартили (четверти). Медиана (центиль $V_{0.5}$) – это варианта, которая находится в середине вариационного ряда и делит этот ряд на две равные части. Нахождение числового значения результата обследования между 25 и 75 центилем расценивается как средний (нормативный) уровень в группе. Показатели, значения которых меньше 3-го центиля, оцениваются как резко пониженные, между 10 и 25 – пониженные, между 75 и 90 – повышенные, выше 97 – резко повышенные. Динамика показателей в пределах 25-50-75 центиль существенным образом не влияет на общее состояние индивида.

3. Мониторинговый анализ показателей за период наблюдения. Для мониторинга физического и функционального состояния здоровья обследованных на протяжении ряда лет наблюдения и наглядного представления полученных данных на основе созданных таблиц-стандартов, была предложена и программно реализована оригинальная компьютерная система. Она нужна для автоматизированной оценки уровней устойчивости, развития/регресса показателей по сравнению с исходными значе-

.

^{*}Волгоградский государственный медицинский университет