Бюллетень экспериментальной биологии и медицины. 2016. Т. 161, № 6. С. 733-735.

РОЛЬ АЛЬФА7- НИКОТИНОВЫХ АЦЕТИЛХОЛИНОВЫХ РЕЦЕПТОРОВ В-КЛЕТОК В РЕАЛИЗАЦИИ ИММУНОТОКСИЧЕСКОГО ЭФФЕКТА ФОСФОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

П.Ф. Забродский, В.В. Масляков, М.С. Громов

Саратовский филиал Самарского медицинского института «РЕАВИЗ»

В экспериментах на неинбредных белых крысах установлено, что при воздействии фосфорорганического соединения (ФОС) диметилдихлорвинилфосфата (ДДВФ) снижались Т-независимое антителообразование В-клетками и содержание в крови ИЛ-10, ИЛ-12, аналогичный эффект вызывал селективный агонист α 7-никотиновых ацетилхолиновых рецепторов (α 7nAChR) GTS-21. Антагонист nAChR хлоризондамин при комбинированном применении с ДДВФ уменьшал редукцию антителообразования по сравнению с показателями при интоксикации ДДВФ. Таким образом, ФОС и/или ацетилхолин способны воздействовать на α 7nAChR В-клеток и вызывать снижение их функции, сопровождающиеся супрессией антителопродукции и уменьшением концентрации в крови ИЛ-10 и ИЛ-12.

Ключевые слова: фосфорорганические соединения; В-клетки; α7-никотиновые ацетилхолиновые рецепторы; ИЛ-10; ИЛ-12.

THE ROLE ALFA7- NICOTINIC ACETYLCHOLINE RECEPTORS OF B-CELLS IN IMPLEMENTATION OF IMMUNOTOXIC EFFECT OF ORGANOPHOSPHORUS COMPOUNDS

P.F. Zabrodskii, V.V. Maslyakov, M.S. Gromov

Saratov Branch of Samara Medical Institute «REAVIZ»

It was established in experiments on noninbred albino rats that the action of the organophosphorus compound (OPC) dimethyl dichlorovinyl phosphate (DDVP) decreased T-independent antibody production by B-cells and content of IL-10, IL-12 in blood, a similar effect evoked selective agonist α 7-nicotinic acetylcholine receptor (α 7nAChR) GTS-21. Antagonist nAChR chlorisondamine in the combined use with DDVP decreased suppression antibody production compared with intoxication DDVP. Thus, OPC and/or acetylcholine able to act on α 7nAChR of B-cells and cause reduction in their function, accompanied by suppression of antibody production and decrease the blood concentration of IL-10 and IL-12.

Keywords: organophosphorus compounds, B-cell, alpha7-nicotinic acetylcholine receptors; IL-10; IL-12.

Адрес для корреспонденции: pfzabrodsky@gmail.com Забродский П.Ф.

Широкое использование фосфорорганических соединений (ФОС) в сельском различных отраслях промышленности и быту может хозяйстве, приводить к загрязнению окружающей среды, вызывать острые и хронические интоксикации человека, животных [1,3,7]. Существует вероятность использования ФОС террористических и криминальных целях, а также в локальных вооруженных конфликтах [3,5,7,10,13,14,15]. От отравлений фосфорорганическими инсектицидами погибает более 200 тысяч человек в год [7]. При этом существенную роль в танатогенезе могут играть инфекционные осложнения и заболевания, связанные с формированием вторичного постинтоксикационного иммунодефицитного состояния [3, 12], и, в частности, с воздействием ФОС на н-холинорецепторы клеток фагоцитарно-моноцитарной системы [1].

Целью исследования являлось определение роли альфа7-никотиновых ацетилхолиновых рецепторов (α 7nAChR) В-лимфоцитов в реализации иммунотоксического эффекта Φ OC.

МЕТОДИКА ИССЛЕДОВАНИЯ

Эксперименты проводили на неинбредных белых крысах обоего пола массой животных 180-240 Γ. Первая являлась контрольной. ФОС группа диметилдихлорвинилфосфат (ДДВФ) (Sigma-Aldrich) применяли внутримышечно, однократно в дозе $0.25~{\rm DL}_{50}$ ежедневно в течение 4-х сут (2-я группа). ${\rm DL}_{50}~{\rm ДДВ}\Phi$ составляла 60,7+2,5 мг/кг. Третьей группе крыс подкожно, однократно, ежедневно вводили антагонист н-холинорецепторов (nAChR) хлоризондамин дийодид – ХД (Sigma-Aldrich) в дозе 10 мг/кг в течение 4 сут. Четвертая группа животных получала ДДВФ (доза, кратность, продолжительность введения, как и в первой группе) и ХД (доза, кратность, продолжительность введения, как и в третьей группе), при этом первое введение ХД проводили за 15-30 мин до применения ДДВФ. Пятой группе крыс вводили селективный агонист α7nAChR GTS-21 – 3-(2,4-dimethoxybenzylidene)anabaseine dihydrochloride – (Sigma-Aldrich) подкожно, однократно в дозе 5 мг/кг,

ежедневно в течение 4 сут [9], учитывая период полувыведения GTS-21, составляющий 12-24 ч [11].

Функцию В-клеток оценивали по числу антителообразующих клеток (АОК) в селезенке на 5 и 8 сут, характеризующему синтез IgM к Т-независимому брюшнотифозному Vi-антигену (Vi-Ag) [3,4], после иммунизации данным антигеном, содержанию в крови ИЛ-10 и ИЛ-12, продуцируемых В-лимфоцитами (и другими клетками) [4,6,8]. В отличие от Т-лимфоцитов и естественных клеток-киллеров (ЕКК) В-лимфоциты не содержат ацетилхолинэстеразу (АХЭ) и другие эстеразы следовательно, при воздействии на них ФОС исключены иммунотоксические эффекты, обусловленные ингибированием данных энзимов [3]. Иммунизацию Vi-Ag в дозе 8 мкг/кг проводили внутрибрющинно всем группам крыс через 15-30 мин после введения ДДВФ, ХД, их комбинации и GTS-21. Контрольная группа животных до иммунизации Vi-Ag получала изотонический раствор хлорида натрия в соответствующем объеме. Концентрацию цитокинов ИЛ-10 и ИЛ-12 определяли в плазме крови всех групп крыс на 5 сут после иммунизации Vi-Ag методом ферментного иммуносорбентного анализа (ELISA), используя наборы (ELISA Kits MyBioSoure) в соответствии с инструкциями изготовителя (номера в каталоге соответственно - MBS8506064, MBS7224515). Полученные данные обрабатывали статистически с использованием t-критерия достоверности Стьюдента.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Интоксикация ДДВФ (группа 2), а также введение селективного агониста α7nAChR GTS-21 (группа 5) вызывали снижение гуморального иммунного ответа к Т-независимому антигену (АОК к Vi-Ag) на 5 сут после иммунизации соответственно в 2,04 и 1,74 раза (p<0,05), а на 8 сут после иммунизации соответственно в 1,82 и 1,76 раза (p<0,05) по сравнению с контролем.

Антагонист пАСhR XД (группа 3), а также комбинированное действие ДДВФ и XД (группа 4) не оказывали влияния на Т-независимое антителообразование по сравнению с контрольной группой (группа 1). Антагонист пАСhR при комбинированном применении с ДДВФ (группа 4) уменьшал (р<0,05) супрессию антителопродукции после иммунизации по сравнению с показателями при интоксикации ДДВФ (группа 2), увеличивая число АОК к Vi-Ag на 5 и 8 сут после иммунизации по сравнению с соответствующими параметрами (группа 2) соответственно в 1,66 и 1,55 раза (табл.1).

Таблица 1. Влияние ДДВФ, хлоризондамина, их комбинации, GTS-21 на функцию В-клеток (AOK к Vi-Ag, 10^3) на 5 и 8 сут после иммунизации Vi-Ag у крыс (M±m, n = 8-10)

Группа	Срок исследования, сут				
		5	8		
Контроль	1	33,2±3,8	43,4±4,5		
ДДВФ	2	16,3±2,0	23,9±2,6		
Хлоризондамин	3	36,2±3,2	42,5±4,8		
ДДВФ +	4	27,0±2,8	37,0±4,2		
хлоризондамин					
GTS-21	5	19,1±2,3	24,7±2,7		
Уровень достоверности -		1-2; 1-5; 2-3; 2-4; 3-4;	1-2; 1-5; 2-3; 2-4; 3-5		
p<0,05		3-5			

Примечание. 1,2,3,4,5 - группы.

Подострая интоксикация ДДВФ (группа 1), действие селективного агониста α7nAChR GTS-21 (группа 5) приводили к уменьшению концентрации в крови ИЛ-10 и ИЛ-12 на 5 сут после иммунизации Vi-Ag соответственно в 1,55 и 1,64 раза (р<0,05). Введение антагониста nAChR XД (группа 3), а также комбинированное применение ДДВФ и ХД (группа 4) не оказывали существенного влияния на содержание в крови крыс ИЛ-10 и ИЛ-12 по сравнению с контролем (табл. 2).

Таблица 2. Влияние ДДВФ, хлоризондамина, их комбинации, GTS-21 на содержание цитокинов ИЛ-10 и ИЛ-12 в крови крыс на 5 сут после иммунизации Vi-Ag, $\pi \Gamma/M \Lambda$ (M±m, n = 6)

Группа	ИЛ-10		ИЛ-12
Контроль	1	310±34	172±20
ДДВФ	2	200±26	105±17
Хлоризондамин	3	296±32	169±21
ДДВФ +	4	265±30	156±27
хлоризондамин			
GTS-21	5	193±24	110±16
Уровень достоверности -		1-2; 1-5; 2-3;	1-2; 1-5; 2-3; 3-5
p<0,05		3-5	

Примечание. 1,2,3,4,5 - группы.

Полученные результаты свидетельствуют о том, что под влиянием ДДВФ существенно снижается функция В-клеток, причем этот эффект не связан с ингибированием АХЭ данных иммуноцитов, так как В-лимфоциты являются эстеразонегативными клетками [3]. Следует отметить, инактивацией АХЭ Т-клеток и ЕКК обусловлены основные иммунотоксические эффекты ФОС [3]. Антагонист

пАСhR XД восстанавливает способность В-клеток продуцировать IgM при интоксикации ФОС в результате блокирования их пАСhR. При этом практически исключается действие молекулы ДДВФ (или ацетилхолина - АX, концентрация которого в крови и лимфоидных органах увеличивается вследствие ингибирования ФОС АХЭ) [3] на пАСhR В-лимфоцитов. Селективный агонист α7nAChR GTS-21 оказывает практически такое же воздействие на активность В-лимфоцитов (Т-независимое антителообразование), как и ДДВФ, что является доказательством непосредственного воздействия ФОС (ДДВФ) и/или АХ на α7nAChR В-клеток, приводящего к супрессии гуморального иммунного ответа.

Известно, что холинергическая стимуляция вызывает активацию AX α7nAChR макрофагов, моноцитов и нейтрофилов, что приводит к снижению продукции этими клетками провоспалительных цитокинов [2]. Редукция функции В-лимфоцитов под влиянием ДДВФ, а также роль в данном эффекте активации α7nAChR вследствие воздействия на В-клетки ФОС и/или AX доказывается также снижением концентрации в крови ИЛ-10 и ИЛ-12, которые синтезируются при введении Т-независимого Vi-Ag преимущественно В-клетками [4,6,8].

Таким образом, ФОС и/или ацетилхолин способны воздействовать на α7nAChR В-клеток и вызывать снижение их функции, сопровождающиеся супрессией антителообразования и уменьшением концентрации в крови ИЛ-10 и ИЛ-12.

ЛИТЕРАТУРА

- Забродский П.Ф., Гришин В.А., Бородавко В.К. // Бюл. эксперим. биол. и мед. 2013. Т. 155, № 4. С. 457-459.
- 2. Забродский П.Ф., Лим В.Г., Шехтер М.С., Кузьмин А.В. // Бюл. эксперим. биол. и мед. 2012. Т. 153, № 5. С. 657-659.
- 3. Забродский П.Ф., Мандыч В.Г. Иммунотоксикология ксенобиотиков: Монография. Саратов, 2007.
- 4. Ройт А., Бростофф Дж., Мейл Д. Иммунология. (Пер. с англ.) М.: Мир, 2000.
- 5. Chilukuri N., Duysen E.G., Parikh K. et al. // Mol. Pharmacol. 2009. Vol. 76, № 3. P. 612-617.
- 6. Holan V., Zajicova A., Javorkova E. et al. // Immunology. 2014. Vol. 141, № 4. P. 577-586
- 7. Hulse E.J., Davies J.O, Simpson A.J. et al. // Am. J. Respir. Crit. Care Med. 2014. Vol. 190, № 12. P. 1342-1354.

- Lasek W, Zagożdżon R, Jakobisiak M. // Cancer Immunol. Immunother. 2014. Vol. 63, № 5. P. 419-435.
- 9. Norman G.J., Morris J.S., Karelina K..et al. // J. Neurosci. 2011. Vol. 31, № 9. P. 3446-3452..
- 10. Parikh K., Duysen E.G., Snow B. et al. s // J. Pharmacol. Exp. Ther. 2011. Vol.337, № 1. P. 92-101.
- 11. Pavlov V.A., Ochani M., Yang L.H., et al. // Crit. Care Med. 2007. Vol.35. P. 1139–1144.
- 12. Pena-Philippides J.C., Razani-Boroujerdi S., Singh S.P. et al. // Toxicol. Sci. 2007. Vol. 97, № 1. P. 181-188.
- 13. RamaRao G., Afley P., Acharya J., Bhattacharya B.K. // BMC Neurosci. 2014. Vol. 15, № 47. P. 1-11.
- 14. Sawyer T.W., Mikler J., Worek F. et al. // Toxicol. Lett. 2011. Vol. 204, № 1. P. 52-56.
- 15. Yanagisawa N. // Brain Nerve. 2014. Vol. 66, № 5.P. 561-569.