Все течет, все изменяется. Гераклит Эфесский (ок. 470г до н.э.)

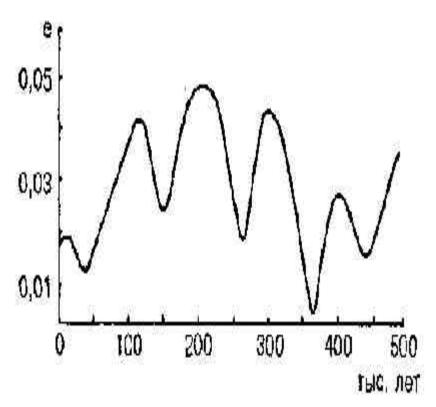
Проскуряков М.А.

ХРОНОБИОЛОГИЧЕСКИЙ МОНИТОРИНГ ДЛЯ РАЦИОНАЛЬНОГО ИСПОЛЬЗОВАНИЯ РАСТИТЕЛЬНЫХ РЕСУРСОВ КАЗАХСТАНА

Презентация сообщения Проскурякова М.А. опубликованного в сборнике Изучение, сохранение и рациональное использование растительного мира Евразии И 39 — Алматы, 2017. - 612 с.

Материалы Международной конференции 17-19 августа 2017г. в г. Алматы, посвященной 85-летию Института ботаники и фитоинтродукции КН МОН РК

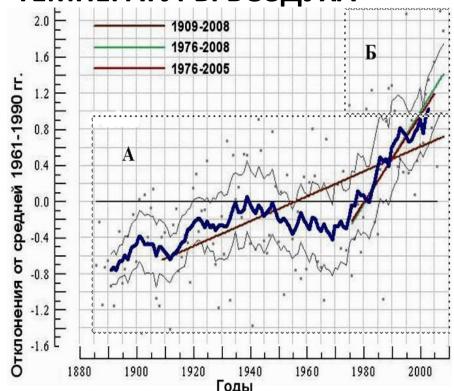
Рассмотренные далее на примере Республики Казахстан возможности хронобиологического мониторинга для решения проблемы рационального использования растительных ресурсов могут найти широкое применение и за пределами этой страны. Внедрение результатов данной работы позволит кардинально повысить конкурентоспособность растениеводства, обеспечить экономическую, продовольственную и экологическую безопасность любого другого региона Земли.


Исключительно высокая ресурсная ценность природной флоры Казахстана общеизвестна [1].

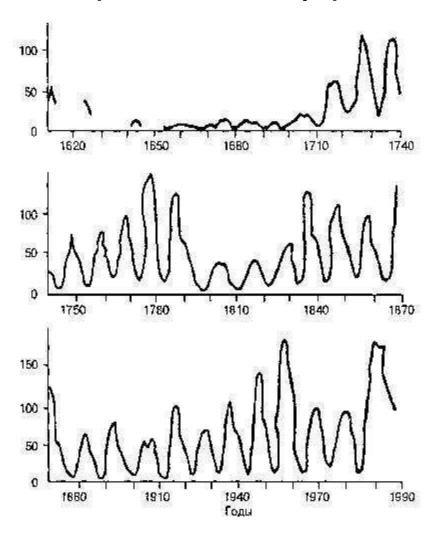
ПОЛЕЗНЫЕ РАСТЕНИЯ РЕСПУБ ЛИКИ КАЗАХСТАН								
ВСЕГО	В ТОМ ЧИСЛЕ							
		ПИЩЕ- ВЫХ		ТЕХНИ- ЧЕСКИХ		ЭФИРНОМАС- ЛИЧНЫХ		
6000	1400	1028	649	534	532	500		

Все это богатство может обеспечить безбедное развитие и процветание страны даже после неизбежного истощения ее рудных и нефтяных запасов. Однако мы постоянно сталкиваемся с огромными рисками и непредсказуемостью в использовании и попытках сбережения растительных ресурсов Казахстана.

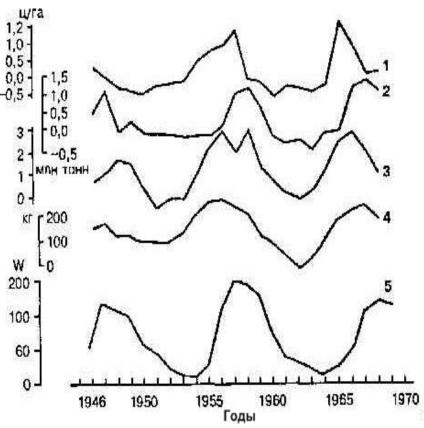
Главная трудность решения проблемы состоит в том, что природная среда обитания растений формируется <u>в</u> <u>результате сопряженного действия</u> многих циклично флюктуирующих абиотических и биотических *факторов*, которое к тому же происходит в режиме глобального потепления. Вот некоторые из этих факторов.


ИЗМЕНЕНИЕ ЭЛЛИПТИЧНОСТИ ОРБИТЫ ЗЕМЛИ ЗА ПОСЛЕДНИЕ ПОЛМИЛЛИОНА ЛЕТ.

Этот показатель определяет количество получаемого Землей солнечного излучения, а следова-тельно определяет периоды глобального потепления и похолодания


http://mirtajn.com/earth/779-vliyaniena-klimat-dvizheniya-zemli.html

ИЗМЕНЕНИЯ СРЕДНЕГОДОВОЙ ТЕМПЕРАТУРЫ ВОЗДУХА


Точками показаны результаты наблюдений, кривыми — 11-летняя сглаженная и 95% доверительный интервал сглаженных значений. Линейные тренды проведены за периоды: 1909-2008, 1976-2005 и 1976-2008 гг. По данным РОСГИДРОМЕТА. См. Пятое национальное сообщение Российской Федерации. М., 2010. 130 с.

ЦИКЛИЧНОЕ ИЗМЕНЕНИЕ СОЛНЕЧНОЙ АКТИВНОСТИ (в числах Вольфа)

И.П. Дружинин (1970), Белецкий, (1985)

ЦИКЛИЧНЫЕ ИЗМЕНЕНИЯ УРОЖАЙНОСТИ многолетних трав (1), зерновых культур (2), валового производства молока (3) и годового удоя молока на фуражную корову (4) в сопоставлении с солнечной активностью (5) (по Д. И. Маликову)

По данным Казгидромета за истекший период с 1936 года среднегодовая температура воздуха в Казахстане возрастала на 0,31°С за каждые10 лет [2]. При этом наряду с устойчиво проявляющимся трендом потепления наблюдались и циклические колебания климата [3,4].

МЕСЯЦ	ПРОДОЛЖИТЕЛЬНОСТЬ ЦИКЛОВ					
ГОДА	КОЛЕБАНИЙ СРЕДНЕМЕСЯЧНЫХ					
	ТЕМПЕРАТУР ВОЗДУХА (ЛЕТ)					
январь	9, 21, 25 и 34					
апрель	5, 8, 16, 29, 32, 34, 37					
июль	5, 7, 12, 17, 28, 37, 38					
октябрь	15, 21, 34, 24, 36					
По данным Г.Н.Чичасова. Технология долгосрочных прогнозов погоды. СПетербург. Гидрометеоиздат.1991.304с.						

БИОЛОГИЧЕСКАЯ УСТОЙЧИВОСТЬ И ЦИКЛИЧ-НОСТЬ ИЗМЕНЕНИЯ СВОЙСТВ РАСТИТЕЛЬНЫХ ОРГАНИЗМОВ И ИХ ЭКОСИСТЕМ ЗАВИСИТ И ОТ СВОЙСТВ САМИХ РАСТЕНИЙ [5]. В их числе: размеров организмов; скорости их роста и развития; особенностей размножения и расселения; гормональных сдвигов; долгожительства; пищедобывательной и защитной активности. А также: взаимодействия трофических уровней и взаимодействия популяций; наличия пищи, хищников, паразитов...

ОБЩИЙ ВЫВОД

В результате одновременного и сопряженного действия перечисленных выше факторов В КАЖДОМ КОНКРЕТНОМ МЕСТЕ ОБИТАНИЯ ДЕТЕРМИНИРУЕТСЯ ЦИКЛИЧНОЕ, МНОГО-ВЕКТОРНОЕ, НЕПРЕРЫВНОЕ И МОЩНОЕ ДВИ-ЖЕНИЕ ВСЕХ СВОЙСТВ РАСТЕНИЙ И ФОРМИРУ-<u>ЕМЫХ ИМИ ЭКОСИСТЕМ</u>. Поэтому без учета закономерностей пространственно – временного движения свойств растений их рациональное использование и сбережение в Казахстане невозможно.

Научным заделом для предлагаемого здесь *решения проблемы* рационального использования растительных ресурсов Казахстана служили результаты многолетних (с 1983г по 2016г) исследований в направлении *разработки научно-методиче*ской основы хронобиологического анализа и интерполяционного прогнозирования пространственно-временного движения свойств растений и формируемых ими экосистем [5-11].

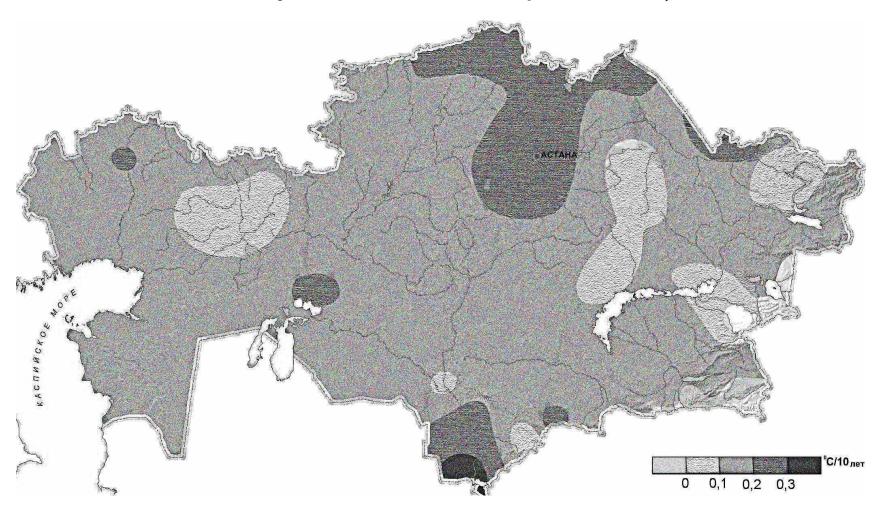
На данной основе и выполнено все дальнейшее изложение этого сообщения.

ГЛАВНЫЙ ПРИНЦИП ПРЕДЛАГАЕМОГО РЕШЕНИЯ ПРОБЛЕМЫ РАЦИОНАЛЬНОГО ИСПОЛЬЗОВАНИЯ РАСТИТЕЛЬНЫХ РЕСУРСОВ

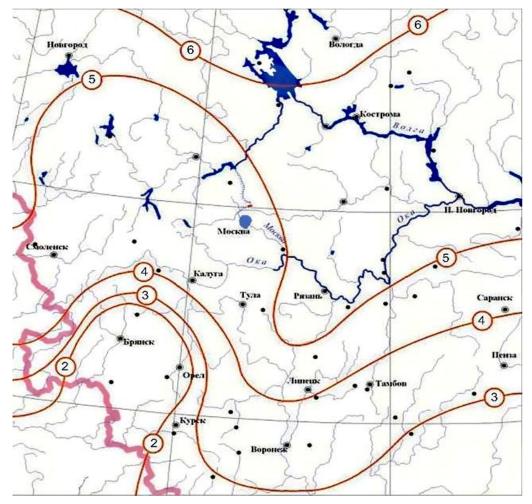
Решение большинства задач имеющих отношение к использованию растительных ресурсов можно получать контролируя сам процесс их движения в режиме нон-стоп. Для этого нужна сеть экологически ординированных ключевых стационаров, позволяющая накапливать, анализировать и инте<u>рполировать данные о движе</u>нии свойств растений и формируемых ими экосистем.

ИНТЕРПОЛЯЦИЯ

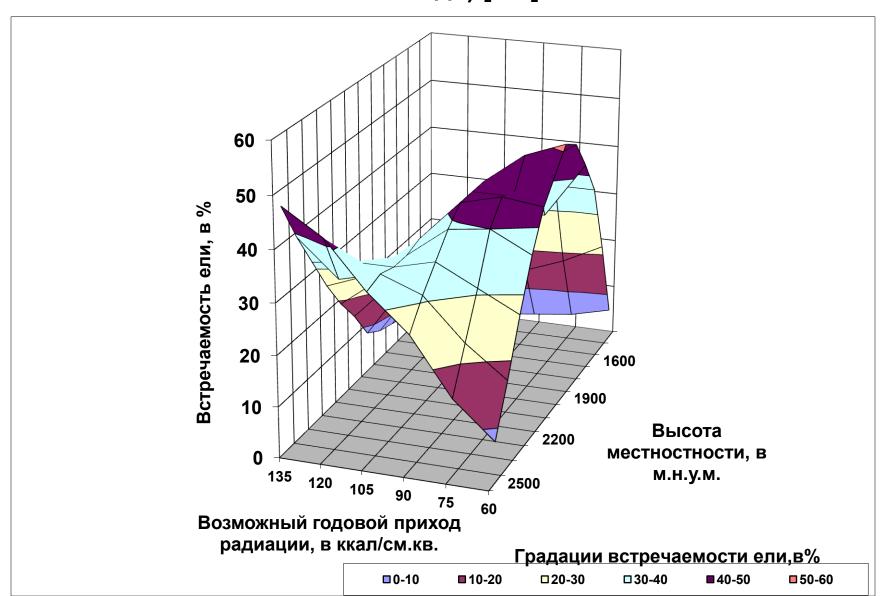
ПОЗВОЛЯЕТ
ДИФФЕРЕНЦИРОВАТЬ КООРДИНАТЫ
ЛОКАЛИЗАЦИИ СВОЙСТВ ОБЪЕКТОВ
ЭКОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ.


ПРИМЕРЫ

Широкие возможности применения метода интерполяции могут быть проиллюстрированы уже на примере работы сети метеостанций Республики.


Карта размещения метеорологических станций Казахстана

Результаты интерполяции закономерностей локализации коэффициента линейного тренда температуры приземного воздуха [2] по наблюдениям сети метеостанций Казахстана за период 1936-2005гг (°C/10 лет)



Результаты интерполяции закономерностей локализации сроков смещения даты листопада (сутки) у березы бородавчатой по материалам наблюдений 50-ти стационаров на ЕТР за период 1970–2000 гг. на территории более 1 млн км² [6].

Точками показаны пункты фенологических наблюдений

Результаты интерполяции закономерностей локализации встречаемости ели Шренка в горах Северного Тянь-Шаня (по материалам выполненного автором градиентного анализа 1975 года) [5-6].

основа для ИНТЕРПОЛЯЦИИ – РЕЗУЛЬТАТЫ СТАТИСТИЧЕСКОГО АНАЛИЗА ВРЕМЕННЫХ РЯДОВ ДАННЫХ СТАЦИОНАРНЫХ **ХРОНОБИОЛОГИЧЕСКИХ** НАБЛЮДЕНИЙ

Временные ряды данных с высокой чувствительностью отражают динамику изменения характеристик растений в режиме времени меняющейся среды их обитания.

Временной ряд принято изображать в виде линейного графика в системе прямоугольных координат. В качестве независимой переменной Х здесь всегда выступает легко учитываемый фактор времени в течение которого изменялась среда обитания растений; а зависимой переменной У – изменяющиеся свойства растений и формируемых ими экосистем.

ПРИМЕР АНАЛИЗА ВРЕМЕННОГО РЯДА ДАТЫ СОЗРЕВАНИЯ ПЛОДОВ У РАСТЕНИЙ СОРТА ЛЕЩИНЫ «ТАМБОВСКИЙ РАННИЙ» [11]

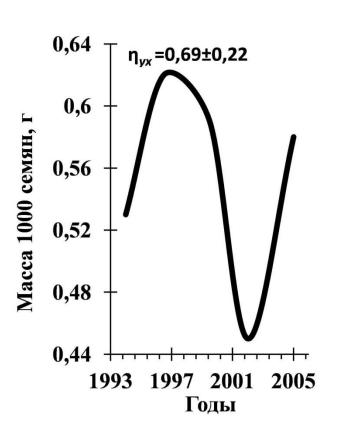
	Длитель.	Даты	Направление	Скорость
Периоды	НОСТЬ	фенофазы	и величина	смещения
линии	периода,	в начале	смещения	фенофазы
регрессии, гг	лет	и конце	фенофазы,	дней/год
		периода	в днях	
1	2	3	4	5
1997-1999	2	17 авг - 12 авг	-5	2,5
1999-2002	3	12 авг - 13 сен	32	10,7
2002-2005	3	13 сен - 30 авг	-14	4,7
2005-2008	3	30 авг - 25 авг	-5	1,7
2008-2011	3_	25 авг - 25 авг	0	0,0

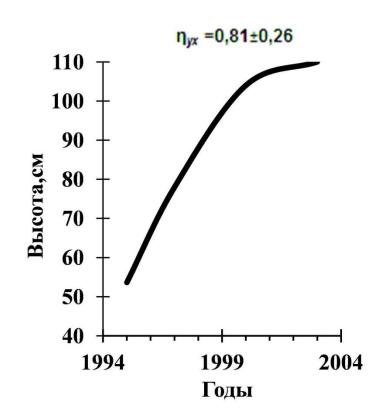
РЕЗУЛЬТАТЫ КОРРЕЛЯЦИОННОГО АНАЛИЗА ВРЕМЕННОГО РЯДА

- Корреляционное отношение $\eta_{yx} = 0.99\pm0.04$. Нулевая гипотеза об отсутствии связи отвергается с вероятностью 99,9%.
- Линия регрессии отражает усредненное течение функции (даты созревания плодов) в режиме времени изменения среды обитания.
- Коэффициент детерминации d_{ух}=0,98 указывает, что 98% доли вариации сроков созревания плодов сопряжено с режимом времени изменения среды обитания растений. Степень уязвимости даты созревания плодов высокая.

Путем анализа временных рядов можно получать следующие количественные оценки:

- данные о степени уязвимости, величине, направлении и скорости изменения биологических характеристик растений и формируемых ими экосистем;
- сведения о начале и ходе кризисных событий в растительных экосистемах;
- координаты локализации биологических характеристик растений и картину их движения на местности при непрерывном изменении среды обитания;

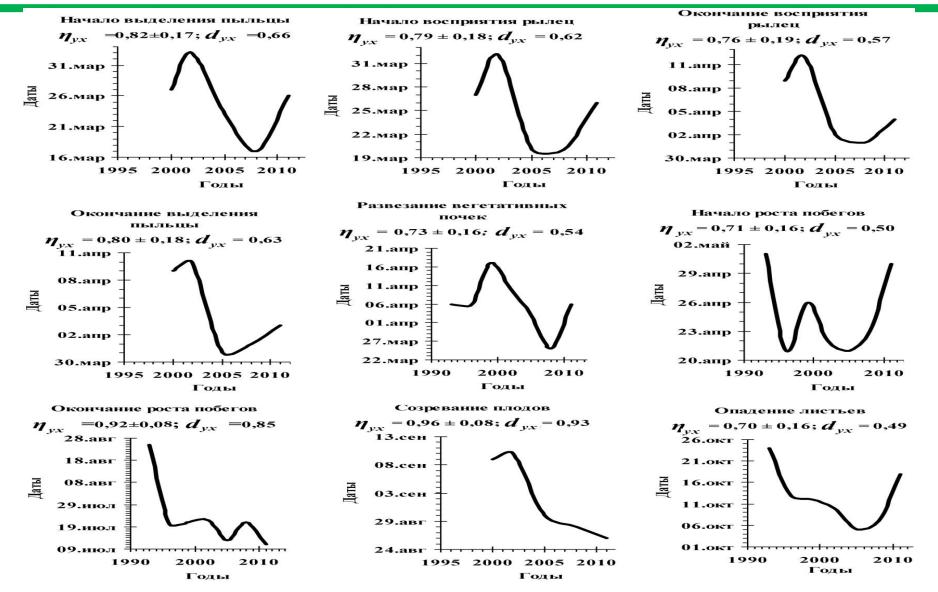

Выполнять такой анализ можно для любой территории, где ведутся преемственные многолетние хронобиологические наблюдения.


ПРИМЕРЫ ЛИНИЙ РЕГРЕССИИ

построенных по материалам анализа временных рядов [6-11]

ЛИНИИ РЕГРЕССИИ МАССЫ 1000 шт СЕМЯН И ВЫСОТЫ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ

(на примере растений амми большой (*Ammi majous* L.) выращенных на коллекционном участке Главного ботанического сада в г.Алматы)


Линия регрессии кризисной динамики нектаровыделения у растений в Южном Прибалхашье

За 12-летний период хронобиологических наблюдений продуктивность нектаровыделения у растений всей медоносной базы региона снизилась в три раза. При этом часть растенийдоминантов растительного прокрова региона полностью утратила способность выделять нектар. В результата прекратилось их опыление насекомыми, остановилось семенное размножение, растения лишились возможности перекомбинации генофонда для их приспособления к меняющемуся климату. Их дальнейшее существование поставлено под угрозу исчезновения.

ПРИМЕРЫ ЛИНИЙ РЕГРЕССИИ РОСТА И РАЗВИТИЯ РАСТЕНИЙ ПРИ ИЗМЕНЕНИИ КЛИМАТА

(для растений Corylus avellana 'Grandioznyi выращенных в Главном ботаническом саде Института ботаники)

Как видим за наблюдаемый 20-ти летний период даты наступления всех фаз роста и развития растений изменялись нелинейно

ОСНОВНЫЕ ПРЕИМУЩЕСТВА И ВЫГОДЫ ОТ ПРЕДЛАГАЕМОГО РЕШЕНИЯ ПРОБЛЕМЫ ОПТИМИЗАЦИИ ИСПОЛЬЗОВАНИЯ РАСТИТЕЛЬНЫХ РЕСУРСОВ КАЗАХСТАНА БУДУТ РЕАЛИЗОВАНЫ УЖЕ НА ЭТАПЕ ПРОЕКТИРОВАНИЯ И АПРОБАЦИИ СЕТИ ХРОНОБИОЛОГИЧЕСКИХ СТАЦИОНАРОВ

ЭТАП ПРОЕКТИРОВАНИЯ И АПРОБАЦИИ СЕТИ СТАЦИОНАРОВ

Разработка схемы размещения экологически ординированной сети хронобиологических стационаров

Посевы и ежегодные наблюдения за индикаторными растениями в местах размещения стационаров

Формирование базы данных 8÷12-летних хронобиологических наблюдений для их статистической обработки

Корреляционный и регрессионный анализ материалов 8÷12-летних хронобиологических наблюдений на стационарах. Определение уровня значимости корреляционных отношений, координат линий регрессии, скорости изменения и степени уязвимости свойств растений.

1. На плакорах: интерполяция географических координат изолиний и создание картограмм пространственно-временного движения свойств растений 2. В горных регионах: интерполяция градиентных координат пространственно-временного движения свойств растений

Анализ закономерностей движения очагов пространственно-временных локализаций свойств растений (величины, направления и скорости их смещения)

Планирование научных исследований и хозяйственных мероприятий в режиме пространственно-временного движения свойств растений

Выполнение научных исследований и хозяйственных мероприятий с учетом пространственно-временного движения свойств растений

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ 8÷12-ЛЕТНЕГО ЭТАПА СОЗДАНИЯ СЕТИ ХРОНОБИОЛОГИЧЕСКИХ СТАЦИОНАРОВ

- Будет создана эффективно действующая сеть хронобиологических стационаров позволяющая непрерывно отслеживать движение свойств растений и их экосистем на территории Казахстана.
- Будет обеспечена самоокупаемость затрат за счет применения полученных результатов. На их основе удастся выяснить движение мест локализации оптимумов продуктивности ценных растений. Организовать там заготовки растительного сырья. Создать питомники и посевы для рентабельного выращивания сырья в промышленных масштабах. Своевременно внести коррективы по кардинальному повышению эффективности агропромышленного комплекса страны.
- Будут разработаны рекомендации по размещению рентабельного ведения бизнеса; обеспечен старт активного развития, финансирования, материальной и кадровой базы для последующих хронобиологических исследований и корректировки режима использования важнейших растительных объектов страны.

ОБЩЕЕ ЗАКЛЮЧЕНИЕ

С практическим внедрением непрерывного высокоточного хронобиологического мониторинга движения свойств растительных организмов и их экосистем проблема оптимизации использования растительных ресурсов уже не сводится к преодолению капризов природы. И не к стремлению исправить или любой ценой ослабить неблагоприятное влияние среды обитания растений. Наоборот, - природа сама будет служить как главный и надежный помощник в создании благоприятных условий для выращивания растительной продукции. а риски и затраты в природопользовании минимизируются.

Применение хронобиологического мониторинга движения координат оптимумов у растений позволит эффективно реализовать решение проблемы природопользования всегда в границах локализующихся оптимумов свойств растений. В хозяйственный оборот будут вовлекаться только те экосистемы и виды растений, в таких местах и в такие сроки изменения среды их обитания, где природа сама, бесплатно и без участия человека обеспечивает их максимальную биологическую продуктивность, биоразнообразие и самовозобновление.

- •Вред и риски от нашего вмешательства в природные процессы будут минимизированы, что даст возможность работать с наименьшими затратами на природопользование и на восстановление растительных ресурсов. С высокой степенью уверенности в результатах. В режиме согласованном с биологией растений, средой их обитания, и, одновременно, с потребностями человека.
- КАРДИНАЛЬНО ПОВЫСИТСЯ ЭКОЛОГИЧЕСКАЯ, ПИЩЕВАЯ И РЕСУРСНАЯ БЕЗОПАСНОСТЬ СТРАНЫ. Удастся соблюдать наиболее щадящий режим природопользования и сохранения биоразнообразия имеющихся растений.

Рассмотренное здесь на примере Казахстана решение проблемы природопользования выполнено с учетом общебиологических закономерностей жизни растений и их экосистем. Поэтому его можно применять и в других регионах Земли.

СПАСИБО ЗА ВНИМАНИЕ!

СПИСОК ЛИТЕРАТУРЫ

- 1. Дикорастущие полезные растения Казахстана./Под ред. Р.А.Уразалиева и С.Б.Кененбаева. Изд. «Асыл кітап». Алматы. 2008. 100 с.
- 2. Второе Национальное сообщение Республики Казахстан Конференции Сторон Рамочной конвенции ООН об изменении климата. Астана. 2009.-190с.
- 3. Чичасов Г.Н. Технология долгосрочных прогнозов погоды. Гидрометеоиздат. С.-Петербург. 1991.- 304с.
- 4. Колебания климата за последнее тысячелетие /А.А.Абрамова, Т.Т.Битвинскас, Е.П.Борисенков и др. Гидрометеоиздат. Л. 1988.- 408с.
- 5. Проскуряков М.А. Горизонтальная структура горных темнохвойных лесов. Алма-Ата: Наука. 1983 – 216 с. http://elar.usfeu.ru/handle/123456789/5261
- 6. Проскуряков М.А. Хронобиологический анализ растений при изменении климата. Тр. Института ботаники и фитоинтродукции. Т.18(1). «Изд-во LEM». Алматы. 2012.-228c. http://elar.usfeu.ru/handle/123456789/5262; http://botsad.kz/node/27
- 7. Проскуряков М.А. Хронобиологический анализ скорости и величины смещения характеристик растений при изменении климата. В сб. Изучение ботанического разнообразия Казахстана на современном этапе. Тр.междунар. конф. 6-7 июня 2013. «Издательство LEM». Алматы. 2013. С.132-135. http://botsad.kz/node/27

- 8. Проскуряков М.А. Градиентный и хронобиологический анализ растений для оптимизации природопользования в горах. // Сохранение и рациональное использование генофонда диких плодовых лесов Казахстана: тр. Междунар. конф.12–16 авг. 2013. «Изд-во LEM». Алматы. 2013. С 54-60. http://sniish.ru/img/proskuryakov-doklady-na-konf-plodovodov-2013.pdf
- 9. Проскуряков М. А. Хронобиологический анализ для решения проблемы продовольствия // Ж. ЭКО-ПОТЕНЦИАЛ. 2014. № 1 (5). С.164-174. http://elar.usfeu.ru/handle/123456789/3187
- 10. Проскуряков М. А. Проблема хронобиологической цикличности движения свойств лесных экосистем. Сообщение 1 // Сибирский лесной журнал. Красноярск. 2015.№ 2. С.71–84.
- http://сибирскийлеснойжурнал.pф/upload/iblock/fb7/fb791eb6f3f241c4f62b4daf16ab58 86.pdf
- 11. Проскуряков М. А. Проблема хронобиологической цикличности движения свойств лесных экосистем. Сообщение 2 // Сибирский лесной журнал. Красноярск. 2015. № 6. С. 70–85.
- http://сибирскийлеснойжурнал.pф/upload/iblock/6ab/6abb6c3aff8b7222345277754bc9f 08e.pdf
- 12. Проскуряков М. А. Хронобиологический мониторинг для рационального использования растительных ресурсов Казахстана. В сб. трудов междунар. конф. Изучение, сохранение и рациональное использование растительного мира Евразии. Алматы, 2017. 612с.