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Предложена технология оценки нижнего предела стандартной ошибки 

уровня подготовленности испытуемого на основе анализа количества и спо-

соба оценивания тестовых заданий. Описана практическая реализация мето-

дики в электронной таблице Microsoft Excel. Показано, что эффективным 

средством минимизации погрешности педагогического измерения является 

переход от заданий с выбором одного правильного ответа к заданиям с вы-

бором нескольких правильных ответов.  

Ключевые слова: тест, уровень подготовленности, уровень трудности зада-

ния, погрешность измерения, математические модели педагогических изме-

рений, Partial Credit Model. 

 

Результаты измерений из-за погрешностей всегда несколько отличаются от ис-

тинного значения измеряемой величины. Результатами контроля знаний (или профес-

сиональной компетентности) на основе математических моделей педагогических изме-

рений являются не истинные, а лишь наиболее вероятные значения уровней подготов-

ленности обучаемых и уровней трудности заданий. Погрешность искажает тестовый 

балл, снижает точность педагогического измерения.  

Для практического использования результатов измерений желательна миними-

зация погрешности до некоторого приемлемого уровня; в идеальном случае – до уров-

ня, при котором погрешностью можно пренебречь. По мнению автора, одним из эф-

фективных средств решения этой задачи могут стать тестовые задания с выбором не-

скольких правильных ответов. 

 

Основные составляющие погрешности 

В статистике различают три основных вида ошибок: грубые, систематические и 

случайные. 

Грубые ошибки возникают вследствие просчёта при вычислении тестового балла 

или неправильной регистрации результата.  

Систематические ошибки однонаправлено либо преувеличивают, либо преумень-

шают результаты измерений. Например, случайное угадывание испытуемым правильных 
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ответов увеличивает результат по сравнению с истинным значением тестового балла, т.е. 

вызывает систематическую ошибку. 

Случайная погрешность меняется по величине и по знаку, от измерения к изме-

рению. Источниками случайных ошибок в случае тестового контроля могут стать:  

 ограниченность числа заданий. Ограниченный набор заданий не всегда достаточен для 

полной проверки уровня и структуры знаний. Возникающие ошибки репрезентативно-

сти, в сочетании с фрагментарностью знаний части обучаемых, могут привести к зави-

симости тестового балла от того, какие именно задания предложены конкретному ис-

пытуемому; 

 низкая дифференцирующая способность распространенной сейчас дихотомической 

системы оценки правильности ответа на каждое задание - правильно или неправильно, 

1 или 0.  Неполные или неточные ответы квалифицируются как незнание ответа, что не 

всегда оправдано. Правильный ответ, оцениваемый максимальным баллом, не всегда 

соответствует известным критериям оценки «отлично»
1
. Напомним, это точное и 

прочное знание материала в заданном объеме, исчерпывающее и логически стройное 

его изложение, умение обосновывать принятые решения, обобщать материал и др.; 

 случайными можно считать также ошибки ввода данных; ошибки, вызванные невер-

ным истолкованием условия выполнения заданий теста и т.п.  

Для повышения точности измерений следует стремиться к всемерному сниже-

нию как систематических, так и случайных погрешностей. 

 

Снижение систематической погрешности 

Основной путь снижения вызываемой угадыванием систематической погрешно-

сти – рациональное применение форм тестовых заданий. В.С.Аванесов рекомендует 

переходить от заданий с выбором одного правильного ответа к заданиям с выбором не-

скольких правильных ответов
2
, с числом ответов до 8-12, там, где можно подобрать 

эффективные дистракторы.  Такие задания устойчивы к угадыванию правильного отве-

та благодаря своей форме и числу дистракторов, что устраняет необходимость коррек-

ции тестового балла. 

Тестовое задание с несколькими правильными ответами – задание, в котором 

правильных ответов может быть несколько, например: 

1. ПРОСТЫЕ ЧИСЛА: 

                                                 
1
 Буланова-Топоркова М.В. и др. Педагогика и психология высшей школы. – Ростов-на-Дону: 

Феникс, 2002. - 544с 
2
 Аванесов В.С. Применение тестовых форм в Rasch Measurement  // Педагогические измерения, 

2005, 4. - С.3-20. 
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  2   15 

  7   19 

  9   28 

  11   31 

В данном задании каждый из ответов выбирается независимо от остальных. Ве-

роятность случайно сделать правильный выбор для любого из элементов равна 0,5, так 

как нужно угадать - какой из двух возможных вариантов правильный? 

По теореме умножения вероятностей независимых событий вероятность угады-

вания правильного ответа задания определяется произведением вероятностей угадыва-

ния для всех k вариантов ответа: 

.
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При k  4 вероятность угадывания равна 1/160,06, при k  6 вероятность 

1/640,016, при k  10 вероятность менее 0,001.  

Иногда учитываются частично правильные ответы. В.С.Аванесов предлагает при 

двубалльной оценке за правильное выполнение задание снимать один балл за одну до-

пущенную ошибку, за две и более ошибки – снимать оба балла. При трёхбалльной 

оценке – снимать один балл за одну допущенную ошибку и снимать два балла за вто-

рую допущенную ошибку. Очевидно, что учёт частично правильных ответов снижает 

устойчивость к угадыванию?  

Поэтому целесообразно оценить величину этого снижения. 

 

Анализ устойчивости к угадыванию 

при учёте частично правильных ответов 

Используя формулу Бернулли
3
, несложно получить выражение вероятности уга-

дывания с одной ошибкой P1 и двумя ошибками P2 для задания с несколькими пра-

вильными ответами: 
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где p  0,5 – вероятность угадывания при выборе одного из элементов ответа. 

Очевидно, что безошибочное угадывание ответа на двухбалльное задание уве-

                                                 
3 Вентцель Е.С. Теория вероятностей. – М.: Высшая школа, 2001. – 576 с. 
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личивает тестовый балл на 2 балла, угадывание с одной ошибкой – всего на один балл. 

Теоретическое среднее значение увеличения тестового балла за счёт угадывания равно 

математическому ожиданию дискретной случайной величины
4
: 


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ii xPx ,        (4) 

где х – увеличение тестового балла за счёт угадывания; хmax – количество баллов, на-

числяемое за безошибочное выполнение тестового задания; Рi  и хi  – вероятность уга-

дывания правильного ответа с i ошибками и соответствующее увеличение тестового 

балла. 

При двухбалльной оценке уравнение (4) примет вид: 
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Если максимальная оценка за задания равна трём баллам, то математическое 

ожидание увеличения тестового балла за счёт угадывания: 
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Для сопоставимости влияния угадывания в тестовых заданиях, оцениваемых 

разным количеством баллов, целесообразно перейти к относительным величинам:  
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Из формул видно, что влияние угадывания зависит от числа вариантов ответа k. 

Эта зависимость для тестовых заданий с выбором нескольких вариантов ответа, оцени-

ваемых тремя баллами (допускается 1-2 ошибки), двумя (допускается 1 ошибка) или 

одним баллом (ошибки не допускаются) представлена графически на рис.1. На этом же 

рисунке приведён график для задания с выбором одного ответа.  

Тестовое задание с выбором нескольких вариантов ответа отличается самой вы-

сокой устойчивостью к угадыванию. Учёт частично правильных ответов, допускающий 

одну ошибку, менее устойчив к угадыванию. Однако даже в этом случае устойчивость 

к угадыванию существенно выше, чем у задания с выбором одного ответа. Задание с 

несколькими правильными ответами, оцениваемое тремя баллами, устойчивее к угады-

ванию, чем задание с выбором одного ответа, если количество вариантов ответа не ме-

нее восьми. 

                                                 
4
 Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. - М.: ЮНИТИ, 1998. - 

1022 с. 
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Рис.1. Влияние угадывания в тестовых заданиях:  

––––––––– - выбор нескольких вариантов ответа без ошибок; 

 – – – – – – - выбор нескольких вариантов ответа не более чем с одной ошибкой; 

– ∙ – ∙ – ∙ –  - выбор нескольких вариантов ответа не более чем с двумя ошибками; 

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙- выбор одного варианта ответа без ошибок 

 

В работе
5
  показано, что влиянием угадывания можно пренебречь, если среднее 

значение вероятности угадывания менее 10%. Это достигается: 

для задания с несколькими правильными ответами 

 оцениваемого одним баллом – при четырёх вариантах ответа (k  4); 

 оцениваемого двумя баллами – при k  6; 

 оцениваемого тремя баллами – при k  8; 

для задания с одним правильным ответом – при k  11. 

Таким образом, переход от заданий с выбором одного правильного ответа к за-

даниям с выбором нескольких правильных ответов, с числом ответов до 10-12, даже 

при учёте частично правильных ответов обеспечивает повышение устойчивости к уга-

дыванию.  

Следует отметить, что кроме заданий с несколькими правильными ответами, 

                                                 
5
 Деменчёнок О.Г. Влияние угадывания на значение тестового балла: корректировать или уст-

ранять? //Педагогические измерения, 2007, 1. с.56-70. 
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весьма устойчивы к угадыванию задания на восстановление последовательности и со-

ответствия, а также задания с кратким свободным ответом
6
. Однако задания на восста-

новление последовательности и соответствия не вполне универсальны, а задания с 

кратким свободным ответом отличает сложность синтаксического (тем более – семан-

тического) анализа ответа, невозможность в ряде случаев предусмотреть ввод испы-

туемыми различных синонимов, различных вариантов написания ответа, частично пра-

вильных ответов и т.п.  

Снижение случайной погрешности 

Тестовые задания с выбором нескольких из предложенных вариантов ответа по-

зволяют различать степень правильности ответа, что повышает информативность ре-

зультата решения. А чем больше информации, тем точнее наши сведения и меньше 

ошибка. В теории педагогических измерений количеством информации I
7
 называют вели-

чину, обратную дисперсии ошибок D, а информационной функцией – соответствующую 

аналитическую зависимость: 

2
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I ,          (7)  

где   – стандартная ошибка. 

Для изучения возможности снижения случайной погрешности необходимо про-

анализировать модель педагогического измерения. 

Математическая модель измерений 

Наиболее известной математической моделью педагогических измерений с гра-

дацией степени правильности ответа (т.е. с возможностью учёта частично правильных 

ответов) является модификация модели Раша с произвольными промежуточными кате-

гориями выполнения тестового задания, известная в англоязычной литературе как Par-

tial Credit Model (PCM). Эта модель может быть записана в виде
 8
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где ijх – вероятность достижения тестируемым результата xij (т.е. того, что тестируе-

                                                 
6
 Деменчёнок О.Г. Влияние угадывания на значение тестового балла: корректировать или уст-

ранять? //Педагогические измерения, 2007, 1. с.56-70. 
7
 количество информации – показатель, характеризующий уменьшение неопределенности состоя-

ния системы. 
8
 Wright B.D., Masters G.N. Rating Scale Analysis: Rasch Measurement. Chicago: Mesa Press, 1982. 

– 204 p. 
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мый i выполнит ровно x шагов и получит х баллов в задании j); х0, 1… xij …xmax j – ко-

личество шагов; xmax j – максимально возможное количество баллов за задание j; 
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Например, для задания, максимально оцениваемого двумя баллами, вероятности 

получения одного и двух баллов соответственно равны: 
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Если максимальная оценка задания равна трём баллам, имеем: 
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Аналогичным образом можно применить уравнение Partial Credit Model (8) для 

анализа заданий с большим количеством градаций степени правильности ответа. 

Для оценки стандартной ошибки измерения уровня подготовленности испытуе-

мого i используется формула
9
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где m – число тестовых заданий.  

Для заданий, максимально оцениваемых двумя и тремя баллами, уравнение (14) 

принимает вид: 

                                                 
9
 Там же: Wright B.D., Masters G.N. Rating Scale Analysis: Rasch Measurement. Chicago: Mesa 

Press, 1982. – 204 p. 
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Оценки стандартной ошибки измерения уровня подготовленности испытуемого 

для анализа заданий с большим количеством градаций степени правильности ответа 

находятся аналогичным образом. 

Для дихотомических заданий (xmax j = 1) формула (14) существенно упрощается: 

  













m

j

ijij

m

j

ijij

m

j

ijij

i

PP
11

11

1

2

11 )1(

1

)1(

11



 ,  (17) 

 

где ij1= Pij – вероятность получения тестируемым i одного балла в задании j, что для 

дихотомического задания соответствует вероятности правильного ответа испытуемого i 

на задание j. 

Вероятность правильного ответа для дихотомического задания может быть най-

дено по модели Георга Раша
10

: 

)(
1

1

1 jiji

ji

ee

e
Pij 











 .       (18) 

Анализ стандартной ошибки измерения уровня подготовленности 

Сравним стандартные ошибки измерения уровня подготовленности испытуемых 

по результатам выполнения двух тестов. Первый тест включает дихотомические зада-

ния (оцениваемые 0 или 1 баллом), а второй – политомические тестовые задания, вы-

полнение которых допускает несколько различающихся по баллам категорий ответа 

(например, полностью верный ответ – 2 балла, частично верный ответ – 1 балл, невер-

ный ответ – 0 баллов). 

Для проведения пробных расчётов примем тест из 20 заданий. Распределение 

уровней трудности заданий  для пробных расчётов примем близким к равномерному: 

 20 дихотомических заданий равномерно распределены по уровню трудности от -5 

                                                 
10

 Rasch G. Probabilistic models for some intelligence and attainment tests. - Copenhagen, Denmark: 

Danish Institute for Educational Research, 1960. 
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до 5 (шаг равен 10/19, т.е. 1-5; 2-4,47; 3-3,95 … 194,47; 205); 

 для 20 политомических заданий примем, что максимальная оценка равна двум бал-

лам; уровни трудности первого шага меньше уровней трудности второго шага на 

один логит, а распределение уровней трудности равномерное: 

 1 1 –5; 1 2 –4 (1 2 – уровень трудности второго шага в 1 задании);  

 2 1 –4,53; 2 2 –3,53;  

 3 1 –4,05; 3 2 –3,05; 

. . . . . . . . . . . . . . . . . . . . .  

 19 1 3,53; 19 2 4,53; 

 20 1 4; 19 2 5. 

Все расчёты выполним в электронной таблице Microsoft Excel. Это позволит 

любому желающему перепроверить полученные результаты или провести оценку по-

грешности измерений для теста любой другой структуры.  

Сначала введём исходные данные (см. рис.2) – идентификаторы заданий (стро-

ка 2) и испытуемых (столбец А), используя для простоты нумерацию. Примем, что 

уровни подготовленности испытуемых  меняются от -5 до 5 с шагом 0,5 (столбец В). 

Ранее принятые уровни трудности отдельных шагов 1,  2 … 20  поместим в ячейки 

B3:V3. 

C4    fx   =(1/(1+EXP(C$3-$B4)))*(1-1/(1+EXP(C$3-$B4))) 
 A B C D E … U V W X 

2 

  

За
д

ан
и

е 
1

 

За
д

ан
и

е 
2

 

За
д

ан
и

е 
3

 

… 

За
д

ан
и

е 
1

9 

За
д

ан
и

е 
2

0 

I  

3   -5 -4,47 -3,95 … 4,47 5   

4 Студент 1 -5 0,25 0,23 0,19 … 0,00 0,00 1,07 0,96 

5 Студент 2 -4,5 0,24 0,25 0,23 … 0,00 0,00 1,30 0,88 

6 Студент 3 -4 0,20 0,24 0,25 … 0,00 0,00 1,48 0,82 

… … … … … … … … … … … 

24 Студент 21 5 0,00 0,00 0,00 … 0,23 0,25 1,08 0,96 

Рис.2. Ввод исходных данных теста с дихотомическими заданиями 

Далее рассчитаем стандартную ошибку для уровня подготовленности испытуе-

мых по формуле (17). Для этого в ячейку С4 запишем формулу   =(1/(1+EXP(C$3-

$B4)))*(1-1/(1+EXP(C$3-$B4))) и скопируем содержимое С4 в диапазон ячеек С4:V24. 

Затем просуммируем количество информации по каждому испытуемому: поместим в 

ячейку W4   =СУММ(C4:V4) и скопируем эту формулу в диапазон ячеек W4:W24. Ос-
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талось извлечь квадратный корень и найти обратную величину: в ячейку Х4 запишем 

=1/W4^0,5 и скопируем содержимое Х4 в диапазон Х4:Х24. 

Для политомических заданий расчётные формулы составляются на основе урав-

нения (8). Так, для первого задания, которое оценивается двумя баллами, в ячейки С4 и 

D4 свободного листа запишем на основе выражений (9-10) формулы вероятностей по-

лучения одного и двух баллов: 

 =EXP($B4-C$3)/(1+EXP($B4-C$3)+EXP($B4-C$3)*EXP($B4-D$3)) 

 =EXP($B4-C$3)*EXP($B4-D$3)/(1+EXP($B4-C$3)+EXP($B4-C$3)*EXP($B4-D$3)) 

Затем скопируем содержимое С4:D4 в диапазон C4:AP24. 

C4    fx =EXP($B4-C$3)/(1+EXP($B4-C$3)+EXP($B4-C$3)*EXP($B4-D$3)) 
 A B C D E F … AO AP AQ AR 

2   Задание 1 Задание 2 … Задание 20 I  

3   -5 -4 -4,53 -3,53 … 4 5   

4 Студент 1 -5 0,42 0,16 0,35 0,08 … 0,00 0,00 1,81 0,74 

5 Студент 2 -4,5 0,45 0,27 0,43 0,16 … 0,00 0,00 2,38 0,65 

6 Студент 3 -4 0,42 0,42 0,45 0,28 … 0,00 0,00 2,92 0,59 

… … … … … … … … … … … … 

24 Студент 21 5 0 1 0 1 … 0,42 0,42 1,81 0,74 

Рис.3. Расчёт вероятностей получения одного и двух баллов  

в тесте с политомическими заданиями 

Осталось найти погрешности измерений. Для этого запишем ходящие в уравне-

ние (15) слагаемые в диапазон С29:АР49. Так, в ячейку С29 введём =C4+4*D4-

(C4+2*D4)^2, что соответствует выражению 11 1  411 2 – (11 1  211 2)
2
. Затем скопи-

руем содержимое С29 в диапазон С29:С49.  Слагаемые остальных заданий вводятся 

аналогично. 

Далее просуммируем количество информации по каждому испытуемому: помес-

тим в ячейку AQ4   =СУММ(C29:AO29) и скопируем эту формулу в диапазон ячеек 

AQ4:AQ24. Теперь рассчитаем стандартную ошибку измерения уровня подготовленно-

сти,  для чего в ячейку АR4 введём =1/AQ4^0,5 и скопируем эту формулу в диапазон 

AR4:AR24. 

Результаты свидетельствуют о нелинейном характере зависимости стандартной 

ошибки измерения  от уровня подготовленности  (рис.4). Стандартная ошибка ми-

нимальна при уровне подготовленности, равном нулю; по мере удаления от центра 

шкалы стандартная ошибка увеличивается. Характер зависимости одинаков для всех 

графиков, что объясняется одинаковым характером распределения уровней трудности 
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заданий. Даже простое сравнение графиков наглядно выявляет преимущество полито-

мического оценивания в точности педагогического измерения. Тест из политомических 

заданий, оцениваемых двумя баллами, позволяет снизить стандартную ошибку опреде-

ления уровня подготовленности испытуемых на 33% по сравнению с дихотомическим 

оцениванием.  Для теста из политомических заданий, оцениваемых тремя баллами, 

снижение ещё больше – почти 50%. 

 

Рис.4. Зависимость стандартной ошибки измерения от уровня подготовленности: 

––––––––– - тест из дихотомических заданий; 

 – – – – – – - тест из политомических заданий, оцениваемых двумя баллами; 

– ∙ – ∙ – ∙ –  - тест из политомических заданий, оцениваемых тремя баллами 

 

Технология оценки нижнего предела погрешности 

Самый точный измерительный инструмент даёт минимальную ошибку при из-

мерении любого объекта. Следовательно, лучшим следует признать тот набор заданий, 

при котором стандартная ошибка минимальна для испытуемого с любым уровнем под-

готовленности. Формально это условие можно записать в виде: 

  nijii ...1ïðèmin),(max  .      (19) 

По сути, выполнение условия (19) означает достижение нижнего предела по-

грешности измерения уровня подготовленности испытуемых. Добиться большей точ-

ности без применения адаптивных технологий тестирования невозможно.  

Попробуем сформулировать технологию оценки нижнего предела погрешности. 
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Данная задача относится к классу задач математического программирования, что по-

зволяет рекомендовать следующую последовательность решения
11

:  

1. Создание формы для ввода условий задачи. Рекомендуемый вид такой формы пред-

ставлен на рис.2 и 3. 

2. Ввод исходных данных: уровней подготовленности испытуемых и уровней трудно-

сти заданий. По мнению автора, на этом этапе решения целесообразно принять рав-

номерное распределение уровней в интервале [–5; 5].  

3. Ввод зависимостей математической модели: формулы (14) для оценки стандартной 

ошибки измерения уровня подготовленности каждого испытуемого, а также зави-

симостей для промежуточных вычислений. 

4. Назначение целевой функции в соответствии с условием (19). 

5. Ввод ограничений и граничных условий. Следует ограничить пределы изменения 

уровней трудности заданий интервалом [–5; 5], а для политомических заданий ука-

зать, что уровень трудности каждого последующего шага должен быть больше 

уровня трудности шага предыдущего. 

6. Поиск решения – поиск минимума нелинейной целевой функции при наличии огра-

ничений численными методами. 

Поиск нижнего предела погрешности измерения 

Для этого в ячейку Х26 листа с данными дихотомических заданий (см.рис.2) 

введём формулу =МАКС(Х:Х24), которая находит максимальное значение стандартной 

ошибки измерения . Далее следует подобрать уровни трудности всех заданий таким 

образом, чтобы минимизировать значение Х26. Встроенное в электронную таблицу Mi-

crosoft Excel средство Поиск решения легко справляется с подобными задачами. В окне 

Поиска решения указываем целевую ячейку Х26, диапазон изменяемых ячеек C3:V3 (в 

этих ячейках хранятся значения уровней трудности всех заданий) и отмечаем направ-

ление поиска – равной минимальному значению (рис.5). Кроме того, ограничим пределы 

изменения уровней трудности заданий интервалом [–5; 5]. Для увеличения точности 

решения можно с помощью кнопки Параметры увеличить принятое по умолчанию 

предельное число итераций и уменьшить относительную погрешность численного ре-

шения. Поиск решения запускается кнопкой Выполнить. 

                                                 
11

 Гельман В.Я.Решение математических задач средствами Excel. - СПб.: Питер, 2003. - 240 с. 
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Рис.5. Ввод параметров поиска решения 

Поиск параметров политомических заданий проводился аналогично. Дополни-

тельно было указано, что уровень трудности каждого последующего шага должен быть 

больше уровня трудности шага предыдущего. 

Результаты поиска решения сведены в табл.1. С помощью таких наборов зада-

ний можно практически выровнять ошибку для всего интервала измерения. Стандарт-

ные ошибки измерения находятся в сравнительно узких интервалах значений 

(см. рис.6): 

 для теста из дихотомических заданий   0,79…0,83; 

 для теста из оцениваемых двумя баллами политомических заданий   0,52…0,57; 

 для теста из оцениваемых тремя баллами политомических заданий   0,43…0,47. 

Уровни трудности заданий, обеспечивающие минимизацию ошибки измерения 

Таблица 1 

№ за-

дания 

Уровни трудности заданий 

дихотомические 

задания 

политомические зада-

ния, оцениваемые 

двумя баллами 

политомические задания, оцени-

ваемые тремя баллами 

i i I 1 i 2 i 1 i 2 i 3 

1 -4,73 -4,57 -4,36 -4,94 -3,37 4,56 

2 -4,73 -4,57 -4,36 -4,88 -4,30 4,56 

3 -4,72 -4,57 -4,36 -4,94 -3,38 4,56 

4 -4,72 -4,57 -4,36 -4,94 -3,35 4,56 

5 -4,72 -4,57 -4,36 -4,94 -3,37 4,56 

6 -2,76 -2,31 -2,28 -4,87 -4,31 4,56 

7 -2,76 -2,44 -1,71 -4,94 -3,39 4,56 

8 -0,90 -2,16 -0,62 -4,94 -3,37 4,56 
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9 -0,90 -1,62 0,02 -4,76 -4,29 4,56 

10 -0,44 -0,86 0,42 -1,43 1,11 3,98 

11 -0,44 -0,38 1,12 -1,43 1,11 3,98 

12 1,93 0,18 1,88 -1,43 1,11 3,98 

13 1,93 0,87 2,53 -1,43 1,11 3,98 

14 1,94 1,51 3,10 -1,43 1,11 3,98 

15 2,40 2,05 3,34 -1,43 1,11 3,98 

16 4,93 2,58 3,79 -1,43 1,11 3,98 

17 4,93 4,62 5,14 -1,43 1,11 3,98 

18 4,93 4,62 5,14 -1,43 1,11 3,98 

19 4,93 4,62 5,14 -1,43 1,11 3,98 

20 4,93 4,59 5,00 -1,43 1,11 3,98 

 

Несложный анализ показывает, что способ оценивания результата выполнения 

тестового задания оказывает большое влияние на точность педагогического измерения. 

Переход от дихотомического оценивания к политомическому значительно уменьшает 

стандартную ошибку уровня подготовленности испытуемого: 

 для теста из двухбалльных заданий ошибка снижается  на 33%; 

 для теста из трёхбалльных заданий ошибка снижается  на 46%. 

Это объясняется различием информационной ценности результатов выполнения 

заданий (рис.7). Так среднее значение количества информации теста из дихотомиче-

ских заданий равно 1,49, а теста из оцениваемых двумя баллами политомических зада-

ний – 3,19 (т.е. в 2,1 раза больше). Количество информации теста из оцениваемых тре-

мя баллами политомических заданий ещё выше – 4,70, что превышает количество ин-

формации при дихотомическом оценивании в 3,2 раза. 
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Рис.6. Зависимость стандартной ошибки измерения от уровня подготовленности  

испытуемого:       ––––––––– - тест из дихотомических заданий; 

 – – – – – – - тест из политомических заданий, оцениваемых двумя баллами; 

– ∙ – ∙ – ∙ –  - тест из политомических заданий, оцениваемых тремя баллами 

 

Рис.7. Зависимость количества информации от уровня подготовленности  

испытуемого:       ––––––––– - тест из дихотомических заданий; 

 – – – – – – - тест из политомических заданий, оцениваемых двумя баллами; 

– ∙ – ∙ – ∙ –  - тест из политомических заданий, оцениваемых тремя баллами 

 

Выводы. 

1. Разработанная технология позволяет оценить нижний предел стандартной ошибки 

уровня подготовленности испытуемого на основе анализа количества и способа 

оценивания тестовых заданий с использованием математической модели Раша и 

Partial Credit Model. 

2. Эффективным средством минимизации погрешности педагогического измерения 

является переход от заданий с выбором одного правильного ответа к заданиям с вы-

бором нескольких правильных ответов. Такой переход способен многократно сни-

зить вызываемую угадыванием систематическую ошибку и существенно (на 30% и 

более) снизить случайную ошибку.  

3. Полученные результаты могут служить основой для оптимизации количества и па-

раметров заданий с целью снижения ошибки педагогического измерения. 


