УДК 378.146

Татьяна Анатольевна Волковая

Московский государственный университет геодезии и картографии 105064, Москва, Гороховский переулок, 4 tvolkovaya@gmail.com

Татьяна Михайловна Королева

Московский государственный университет геодезии и картографии 105064, Москва, Гороховский переулок, 4 komlevo@mail.ru

Елена Георгиевна Маркарян

Московский государственный университет геодезии и картографии 105064, Москва, Гороховский переулок, 4 egmarkaryan@gmail.com

НЕКОТОРЫЕ ЗАМЕЧАНИЯ К СОДЕРЖАНИЮ ТЕСТОВ ПО МАТЕМАТИКЕ В СИСТЕМЕ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ ВЫСШЕЙ ШКОЛЫ

В статье изложен взгляд авторов на содержание тестовых заданий для студентов, обучающихся математике в системе дистанционного образования.

Ключевые слова: дистанционное образование, преподавание математики в высшей школе.

Задания с выбором одного правильного ответа в тестовой практике распространены достаточно широко, что объясняется удобством этой формы, в первую очередь, для автоматизации контроля знаний. Студенты и школьники относятся к таким заданиям хорошо из-за обязательного наличия там правильного ответа, хотя и вместе с неправильными [1].

Такие задания, называемые заданиями в закрытой форме, состоят из основного текста, в котором формулируется вопрос или дается постановка задачи, и нескольких вариантов ответа. Правильный ответ на вопрос называют райтером.

Дистрактором (от англ. to distract – отвлекать) называется неправильный, но правдоподобный ответ, в заданиях с выбором одного или нескольких правильных ответов [2].

Одна из задач разработчика теста – сделать неправильные ответы правдоподобными для незнающих студентов.

Психологический смысл применения дистрактора заключается в создании интерферентной среды тестирования, развивающей рефлексивное мышление. В такой среде приходится искать аргументы в пользу того или иного ответа. В итоге появляется привычка аргументировать выбор ответа. Известно, что аргументированные знания всегда ценнее и прочнее знаний неаргументированных [2].

Современная модель структуры познавательной деятельности обучающегося предполагает уровневый подход описания достижений учащихся (И.Я. Лернер, В.П. Беспалько и др.).

Первый уровень связан с непосредственным воспроизведением по памяти содержания изученного материала и его узнаванием. Второй уровень предполагает понимание и применение знаний в знакомой ситуации по образцу, выполнение действий с четко обозначенными правилами. Третий уровень включает применение знаний в измененной или незнакомой ситуации [3].

Тесты по математическим дисциплинам в закрытой форме с множественным выбором экономят трудовые затраты педагогических работников, однако мы убеждены в следующем:

- 1) Задания не должны сводиться к воспроизведению изученного материала по памяти или к шаблонному выполнению действий по алгоритму.
- 2) При выборе дистракторов следует учитывать типичные ошибки, допускаемые студентами при решении задач. Если испытуемый не знает материал, то все дистракторы должны быть одинаково привлекательны, а выбор любого из них случайным и равновероятным.
- 3)По возможности формулировка заданий должна быть такой, чтобы правильный ответ не мог быть вычислен путем подстановки вариантов

ответов в условие; не было возможности найти ответ в поисковой системе или путем применения онлайн-калькулятора.

4) Поиск правильного ответа приводил к лучшему пониманию содержания изучаемого курса.

Предлагаем несколько примеров создания тестовых заданий, удовлетворяющих, на наш взгляд, таким требованиям:

Задание	Краткая характеристика
Результат линеаризации функции	Задание проверяет не только
$y = (x+2)e^{-x^2+x}$ в точке $x_0 = 0$	навык дифференцирования функ-
имеет вид:	ций, но и понимание дифферен-
1) $2 - 3x$	циала функции как главной
2) 2 + 3 <i>x</i> (верный)	линейной части приращения.
3) $1 + 3x$	Представление функции в виде,
4) 2 – <i>x</i>	учитывающем главиую часть ее
5) 2 + <i>x</i>	изменения – основа приближен-
	ных вычислений.
Функция $y = \frac{(x-1)^2}{(x+1)^3}$ возрастает в	В данном задании в качестве
интервале:	верного ответа указан частичный
1) (-4; -2)	интервал возрастания функции. Такие задания дают возможность
2) (0; 0,5)	оценить, насколько творчески
3) (2;4)(верный)	студент понимает условие.
4) (4; 6)	студент понимает условие.
5)(6; ∞)	
Если m и M – наименьшее и	Испытуемый лишен возможности
паибольшее значения функции	вычислить правильный ответ
$y = x + \frac{25}{x+4}$ на отрезке [-2; 6] ,то	
значения выражения m+2M равно	условие задачи. Получив решение

- 1)7
- 2) 27 (верный)
- 3) 22,5
- 4) 26.5
- 5) 32

алгоритму, студент должен проанализировать результаты и составить ответ в соответствии с поставленным вопросом.

Найдите сумму координат направляющего вектора прямой (2x - 3y - 4z + 8 = 0),(-x+2y+z-4=0) если его первая координата равна 5

- 1) 6
- 2) 7
- 3) 8 (верный)
- 4) 9
- 5) 10

Данное задание формирует понимание сути направляющего вектора прямой; в качестве него может быть выбран любой из множества векторов, коллинеарных данному, но указана координата, которая определяет выбор двух оставшихся.

Найдите m+n+p+q, если выполняется равенство $A_{3\times 2} \cdot B_{m\times n} + C_{p\times q} = D_{3\times 3}$

- 1) 10
- 2) 11 (верный)
- 3) 12
- 4) 13
- 5) 14

Данное задание определяет умение студента ориентироваться в абстрактном представлении матрицы, используя правила липейных операций и операции умножения.

Найти сумму $x_0 + y_0 + z_0$, где x_0 , y_0 , решение системы x + 2y - 3z = 83x - y + 2z = -1(2x + 3y - z = 9)

- 1) 2 (верный)
- 2) 3
- 3) 4
- 4) 1
- 5) -2

Испытуемый лишен возможности вычислить правильный ответ путем подстановки вариантов условие ответа в задачи.

При решении задачи студентом могут быть допущены различные виды ошибок, в том числе негрубые арифметические. Считаем, что такие ошибки при понимании сути выполняемого задания не должны приводить к оценке в ноль баллов. Целесообразно введение дифференцированной оценки тестового задания с различным весом ответов. Такая разветвленная оценка тестов впервые была использована на кафедре высшей математики МИИГАиК при разработке Централизованного тестирования в конце 90-х гг.

Все тестовые задания апробированы в системе дистанционного обучения МИИГАиК.

Литература

- 1. *Аванесов В.С.* Композиция тестовых заданий. М.: Центр тестирования, 2002. 238 с.
- 2. *Аванесов В.С.* Дистракторный анализ // Педагогические измерения. -2013. -№ 1. С. 70-78.
- 3. *Челышкова М.Б.* Теория и практика конструирования педагогических тестов: Учеб.пособие. М.: Логос, 2002. 432 с.

SOME COMMENTS ON THE CONTENT OF MATHEMATICS TEST TASKS IN THE SYSTEM OF DISTANCE EDUCATION IN HIGH SCHOOL

Tatiana Volkovaya

Moscow State University of Geodesy and Cartography 105064, Moscow, Gorokhovsky pereulok, 46 e-mail: tvolkovaya@gmail.com

Tatiana Koroleva

Moscow State University of Geodesy and Cartography 105064, Moscow, Gorokhovsky pereulok, 46 e-mail: komlevo@mail.ru

Elena Markaryan

Moscow State University of Geodesy and Cartography 105064, Moscow, Gorokhovsky pereulok, 46 e-mail: egmarkaryan@gmail.com

The authors describe their point of view on the content of mathematics test tasks in high school in distance education system.

Keywords: distance education system, teaching mathematics in high school.

References

- 1. Avanesov V.S. Kompozitsiya testovykh zadaniy [Kompozition of test tasks]. Moscow, Tsentr testirovaniya, 2002. 238 p. (in Russian)
- 2. *Avanesov V.S.* Distraktorny analysis. Pedagogicheskiye izmereniya[Pedagogical measurements], 2013, no.1. pp. 70–78. (in Russian)
- 3. *Chelyshkova M.B.* Teoriya i praktika konstruirovaniya pedagogicheskikh testov [Theory and practice of designing of pedagogical tests]. Moscow, Logos, 2002. 432 p. (in Russian)